

SHAHEED SUKHDEV COLLEGE OF BUSINESS STUDIES

(University of Delhi)

Dr. KN Katju Marg, Sec-16, Rohini, Delhi-11008

Certificate course on Data Analytics & Business Intelligence Batch-14 (Weekend)

About the Course

Data Analytics and Business Intelligence are the need of the hour. With the exponential growth in data generation, it is crucial to know how to extract meaningful insights. By leveraging statistical techniques and machine learning methods, predictive models can be developed to forecast future outcomes and support informed decision-making.

Rationale

In today's data-driven world, Data Analytics and Business Intelligence (BI) play a pivotal role. Data analysis is required to understand organizational problems and to explore data while business intelligence helps companies to make better decisions by showing current and historical data within their business context. To make the organization run smoother and more efficiently, analysts use BI to provide performance and competitor benchmarks.

Aims

The primary aim of this course is to equip students with the skills required to analyze trends, uncover actionable insights, and make strategic and tactical decisions driven by data.

Learning Outcomes

Students will be able to apply principles of statistics, python programming, machine learning, probability and decision making in the context of data analysis. Moreover, they should design tested and effective advanced analytics models for decision making and communicate effectively in a variety of modes and contexts.

Objectives

Expecting to build a solid business analytics foundation, this course has been designed to impart knowledge of machine learning and statistical methods for data analysis. The course shall also provide sufficient knowledge of python programming language for machine learning algorithms and python/R programming for statistical methods. A brief introduction to neural networks and deep learning will also be covered.

Target Audience

The course is designed for students and graduates who wish to develop a strong foundation in business analytics. A prerequisite is the study of mathematics up to the Class 12 level.

Future Prospects

Participants will gain valuable skills in data analysis, Python programming, and business intelligence, enhancing their career prospects in the analytics and technology sectors. The course prepares learners to solve complex data-driven problems and adapt to the evolving landscape of

automated and intelligent business systems.

Course Duration: 125 Hours [January, 2026 - June, 2026]

<u>Course Evaluation:</u> Evaluation of the course will be done based on Class Assignments, End term Examination, and Project Work.

Fees: Rs. 40,200/-

(Course Fees: Rs. 40000/- plus taxes if any. Application Fees: Rs. 200/-)

Resource Persons

- 1. Eminent resource persons from reputed institutes will be invited.
- 2. The experts from various industries will also be invited for delivering lectures and hands-on training.

Course Contents

Module 1: Foundation of Data Analytics & Python Programming

(20 hours)

Foundation of Data Analytics: - Introduction, Evolution, Concept and Scopes, Data, Big Data, Metrics and Data classification, Data Reliability & Validity, Problem Solving with Analytics, Different phases of Analytics in the business and Data science domain, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics, Different Applications of Analytics in Business, Text Analytics and Web Analytics, Skills for Business Analytics, Concepts of Data Science, Basic skills required for understanding Data Science.

Python Programming: - Introduction to Python Editors & IDE's (Jupyter, Spyder, pycharm, etc.), custom environment settings, basic data types-numeric, string, float, tuples, list, dictionary, sets and their operations, control flow (if-elif-else), loops (for, while), inbuilt functions for data conversion, writing user defined functions.

Concepts of packages/libraries – important packages like NumPy, SciPy, scikit-learn, Pandas, Matplotlib, seaborn, etc., installing and loading packages, reading and writing data from/to different formats, simple plotting, functions, list comprehensions, database connectivity, Playing with Date Format.

Module 2: Probability & Statistics

(**30** hours)

Descriptive Analytics: Introduction to Descriptive Analytics, Measures of central tendency: mean, median, mode. Measures of dispersion: range, variance, standard deviation. Understanding skewness and kurtosis and their implications in data analysis, Five number summary, data visualization: Bar diagrams, Histograms, box plots, and scatter plots, Understanding how to interpret and draw insights from these visualizations, Correlation Analysis, Outlier detection: Z-score method, IQR method, box plots, Introduction to Exploratory Data Analysis

Probability: Measures of probability, conditional probability, independent event, Bayes' theorem, random variable, discrete (binomial, Poisson, geometric, hypergeometric, negative binomial) and continuous (uniform, exponential, normal, gamma). Expectation and variance, markov inequality, chebyshev's inequality, central limit theorem.

Inferential Statistics: Sampling & Confidence Interval, Inference & Significance. Estimation and Hypothesis Testing, t- test/z-test (one sample, independent, paired)

Module 3: Data Munging & Data Visualization

(10 hours)

Relevance in industry, Statistical learning vs machine learning, types and phases of analytics.

Data pre-processing and cleaning: data manipulation steps (sorting, filtering, duplicates, merging, appending, subsetting, derived variables, data type conversions, renaming, formatting, etc.), normalizing data, sampling, missing value treatment, outliers detection and treatment.

Exploratory data analysis and Data Visualization : Data visualization using matplotlib, seaborn libraries, creating graphs (bar/line/pie/boxplot/histogram, heatmap etc.), bivariate analysis (cross tabs, pivot table, distributions and relationships, graphical analysis).

Module 4: Machine learning – Part 1

(20 hours)

Introduction to Machine Learning, Key elements of Machine Learning, Supervised vs. Unsupervised Machine Learning.

Supervised Learning (Regression Techniques): Linear Regression, Multiple Linear Regression Polynomial Regression.

Supervised Learning (Classification Techniques): Logistic Regression, Logistic Regression vs. Linear Regression, Logistic Regression with one variable and with multiple variables, Application to multi-class classification. The problem of Overfitting, Application of Regularization in Linear

and Logistic Regression. Regularization and Bias/Variance. Classification using K-NN, Naive Bayes classifier, Classification & Regression Tree (CART) for Decision Tree classification, Random Forest, Support Vector Machines.

Natural Language Processing (NLP): Definition and scope of NLP, Applications of NLP in data analytics, Text classification, sentiment analysis

Model Evaluation: Cross validation types (train & test, bootstrapping, k-fold validation), hyperparameter tuning, confusion matrices, basic evaluation metrics, precision-recall, ROC curves.

Case study with critical thinking

Module 5: Machine learning – Part 2

(15 hours)

Neural Networks: Introduction, Model Representation, Gradient Descent vs. Perceptron Training, Stochastic Gradient Descent, Multiclass Representation, Multilayer Perceptrons, Backpropagation Algorithm for Learning, Introduction to Deep Learning.

Association Rule Mining: Mining frequent item sets, Apriori algorithm, market basket analysis.

Case study with critical thinking

Unsupervised Machine Learning: Introduction, Clustering, K-Means algorithm, Affinity Propagation, Agglomerative Hierarchical, DBSCAN, Dimensionality Reduction using Principal Component Analysis.

Case study with critical thinking

Time Series Forecasting: Trends and seasonality in time series data, identifying trends, seasonal patterns, first order differencing, periodicity and autocorrelation, rolling window estimations, stationarity vs. non-stationarity, ARIMA modeling, Introduction to machine learning-based forecasting

Case study with critical thinking

Module 6: Optimization in Analytics

(5 hours)

Introduction to Operations Research (OR), Linear Programming Problems (LPP), Geometry of linear programming, Sensitivity and Post-optimality analysis, Duality, and its economic interpretation. Introduction to Non-linear Programming

Module 7: Introduction to SQL & No-SQL

(10 hours)

Introduction to DBMS. Learning SQL query structure with examples, Operators in SQL, SQL vs No-SQL, CRUD operations using SQL and No-SQL using Python.

Introduction to Data management and query system OLTP and OLAP and Their data models, Data warehousing, ETL and data integration

Module 8: Business Intelligence through Excel & Power BI

(15 hours)

Advanced Excel for Analytics: Data Cleaning and Processing, Vlookup, Pivot table, Pivot Charts and Dashboards, Date functions, Conditional Formatting and Data Validation, VBA Functions and Procedures

Power BI: Concepts of Business intelligence (BI), Relevance of BI in business analytics, industry and different domains, Report Generation and Dashboard creation using Power BI.

Course Co-coordinator:

Dr. Rishi Rajan Sahay (Mob: 9818011766, Email: rajansahay@sscbsdu.ac.in),

Course email id: dataanalytics@sscbsdu.ac.in