

 दिल्ली विशि्विद्यालय
 UNIVERSITY OF DELHI

Bachelor of Science (Hons.) Computer Science

(Effective from Academic Year 2019-20)

Revised Syllabus as approved by

Academic Council

Date: No:

Executive Council

Date: No:

Applicable for students registered with Regular Colleges, Non Collegiate

Women’s Education Board and School of Open Learning

1

List of Contents

Preamble 2

1. Introduction to Programme B.Sc. (H) Computer Science 3

2. Learning Outcome-based Curriculum Framework in Programme B.Sc. (H) Computer

Science 3

2.1 Aims of Bachelor Degree Programme in B.Sc. (H) Computer Science 3

3. Graduate Attributes in B.Sc. (H) Computer Science 3

4. Qualification Descriptors for Graduates B.Sc. (H) Computer Science 4

5. Programme Learning Outcomes for in B.Sc. (H) Computer Science 4

6. Structure of in B.Sc. (H) Computer Science. 5

6.1 Credit Distribution for B.Sc. (H) Computer Science 5

6.2 Semester-wise Distribution of Courses. 6

7. Courses for Programme B.Sc. (H) Computer Science 10

8. Acknowledgement 127

2

Preamble

The objective of any programme at Higher Education Institute is to prepare their students for the

society at large. The University of Delhi envisions all its programmes in the best interest of their

students and in this endeavour it offers a new vision to all its Under-Graduate courses. It imbibes

a Learning Outcome-based Curriculum Framework (LOCF) for all its Under Graduate

programmes.

The LOCF approach is envisioned to provide a focused, outcome-based syllabus at the

undergraduate level with an agenda to structure the teaching-learning experiences in a more

student-centric manner. The LOCF approach has been adopted to strengthen students’

experiences as they engage themselves in the programme of their choice. The Under-Graduate

Programmes will prepare the students for both, academia and employability.

Each programme vividly elaborates its nature and promises the outcomes that are to be

accomplished by studying the courses. The programmes also state the attributes that it offers to

inculcate at the graduation level. The graduate attributes encompass values related to well-being,

emotional stability, critical thinking, social justice and also skills for employability. In short,

each programme prepares students for sustainability and life-long learning.

The new curriculum of B.Sc. (H) Computer Science offers to develop theoretical foundations in

computer science to build computational thinking, analytical, and problem solving skills. The

programme builds a base for entry level jobs in information technology and prepares the students

for higher studies in the area of Computer Science/Applications. The course aims to produce

skilled graduates with a creative mind-set who can recognize a computational problem either in

IT industry or society, and develop effective solutions. Understanding the needs of society and

societal obligations are instilled in courses related to AI and Information security.

The students develop expertise in programming skills using contemporary programming

languages used by software industry. It covers core computer science topics like computer

systems architecture, data structures, computer networks, operating systems, computer graphics,

algorithms, software engineering, database management, theory of computation, artificial

intelligence, and information security. The mode of learning shall be a blend of the formal and

the inquiry based methods, with special focus on practical and projects.

The University of Delhi hopes the LOCF approach of the programme B.Sc. (H) Computer

Science will help students in making an informed decision regarding the goals that they wish to

pursue in further education and life, at large.

3

1. Introduction to Programme B.Sc. (H) Computer Science

The B.Sc. (H) Computer Science programme is designed to develop analytical & computational

thinking, and problem solving skills. It covers the core computer science topics like computer

systems architecture, data structures, computer networks, operating systems, computer graphics,

algorithms, software engineering, database management, theory of computation, artificial

intelligence, and information security. The programme builds a base for entry level jobs in

information technology and prepares the students for higher studies in the area of Computer

Science/Applications.

2. Learning Outcome-based Curriculum Framework for B.Sc. (H) Computer

Science programme

2.1 Aims of Bachelor Degree Programme in B.Sc. (H) Computer Science

i. Develop theoretical foundations in computer science.

ii. Develop expertise in programming skills using high level programming languages.

iii. Develop skills to design, implement and document the solutions for computational

problems.

iv. Develop soft skills to work effectively in a team to solve a problem.

v. Develop the ability to use state of the art technologies.

vi. Inculcating the understanding of the needs of society and the importance of societal

obligations.

3. Graduate Attributes in B.Sc. (H) Computer Science

Disciplinary knowledge

Ability to build (either independently or by joining higher academic program) on of the core

computer science concepts learnt in the course.

Ability to apply the core computer science concepts to solve the problems in the IT industry.

Problem solving

Graduates are equipped with skills to solve the computational problems at their workplace and

for the society.

4

Cooperation/Team work

Graduates demonstrate competence to use communication skills to participate or lead a team for

a new initiative or for solving an existing problem.

Communication Skills

Graduates demonstrate effective communication and presentation skills while interacting with

professional peers and in the society.

Scientific reasoning

Given a problem, the graduates will be able to analyse it, suggest solutions, and critically

evaluate the solutions proposed by others.

Professional Ethics: Graduates follow ethical principles and commitment to professional ethics,

accountability and responsibilities.

4. Qualification Descriptors for Graduates B.Sc. (H) Computer Science

i. Demonstrate coherent knowledge and understanding of the logical organization of a

digital computer, its components and working. Understanding of the time and space

complexities of algorithms designed to solve computational problems.

ii. Demonstrate programming skills in high level language and an ability to learn a new

programming language without substantial effort.

iii. Apply knowledge of logical skills to identify and analyse problems and issues, and seek

solutions to real-life problems. For example, creating mobile applications, database

applications, and educative computer games.

iv. Enhanced communication and leadership abilities and ability to work and learn in team

environment.

v. Understand the needs of society and sensitivity to societal obligations

5. Programme Learning Outcomes for B.Sc. (H) Computer Science

i. Ability to analyze a problem, and identify and define the computing requirements

appropriate to its solution.

5

ii. Ability to design, implement, and evaluate a computer-based system, process,

component, or program to solve the given problem.

iii. Ability to communicate effectively through oral and written means.

iv. Ability to work in a team to achieve a common goal

6. Structure of B.Sc. (H) Computer Science

6.1 Credit Distribution for B.Sc. (H) Computer Science

Course *Credits

Theory + Practical Theory+ Tutorial

--

I. Core Course

(14 Papers) 14 X 4 = 56 14 X 5 = 70

Core Course Practical/ Tutorial*

(14 Papers) 14 X 2 = 28 14 X 1 = 14

II. Elective Course

(8 Papers)

A.1. Discipline Specific Elective 4 X 4 = 16 4 X 5 = 20

(4 Papers)

A.2. Discipline Specific Elective

Practical/ Tutorial*

4 X 2 = 8

4 X 1 =4

(4 Papers)

B.1. Generic

Elective/Interdisciplinary

 4 X 4 = 16

4 X 5 =20

(4 Papers)

B.2. Generic Elective Practical/

Tutorial*

4 X 2 =8

4 X 1=4

(4 Papers)

* Optional Dissertation or project work in place of one Discipline Specific Elective

paper (6 credits) in 6
th

 Semester

III. Ability Enhancement Courses

1. Ability Enhancement Compulsory

6

(2 papers of 4 credit each) 4 X 2 = 8 4 X 2 =4

Environmental Science

English/MIL Communication

2. Skill Enhancement Elective 4 X 2 = 8 4 X 2 = 8

(2 papers of 4 credit each)

Total Credit 140 140

* wherever there is a practical there will be no tutorial and vice-versa

6.2 Semester-wise Distribution of Courses.

SE

ME

ST

ER

DISCIPLINE

SPECIFIC CORE

COURSE (DSC) (14)

Ability

Enhancement

Compulsory

Course

(AECC)

(2)

Skill

Enhanceme

nt Course

(SEC)

(2)

Elective:

Discipline

Specific

(DSE)

(4)

Elective:

Generic

(GE)

(6)

I Programming

Fundamentals using

C++

 GE-1

Computer System

Architecture

II Programming in

JAVA

 GE-2

Discrete Structure

III Data Structures SEC-1 GE-3

Operating System

Computer Networks

IV Design and Analysis

of Algorithms

 SEC-2 GE-4

Software

Engineering

Database

Management

Systems

V Internet

Technologies

 DSE-1

Theory of

Computation

DSE-2

VI Artificial

Intelligence

 DSE-3

Computer Graphics DSE-4

7

Semester COURSE OPTED COURSE NAME CREDITS

I

Core Course-I Programming Fundamentals

using C++

4

Core Course-I

Practical/Tutorial

Programming Fundamentals

using C++ Lab

2

Core Course-II Computer System

Architecture

4

Core Course –II

Practical/Tutorial

Computer System

Architecture Lab

2

Generic Elective-I GE – 1 4/5

Generic Elective-I

Practical/Tutorial

 2/1

II

Core Course-III Programming in Java 4

Core Course –III

Practical/Tutorial

Programming in Java Lab 2

Core Course-IV Discrete Structure 4

Core Course –IV

Practical/Tutorial

Discrete Structure Tutorial 2

Generic Elective- 2 GE – 2 4/5

Generic Elective- 2

Practical/Tutorial

 2/1

III

Core Course – V Data Structures 4

Core Course –V

Practical/Tutorial

Data Structures Lab 2

Core Course - VI Operating System 4

Core Course –VI

Practical/Tutorial

Operating System Lab 2

Core Course - VII Computer Networks 4

Core Course –VII

Practical/Tutorial

Computer Networks Lab 2

Skill Enhancement Course-1 SEC – 1 4

Generic Elective – 3 GE- 3 4/5

Generic Elective - 3

Practical/Tutorial

 2/1

IV

Core Course – VIII Design and Analysis of

Algorithms

4

Core Course –VIII

Practical/Tutorial

Design and Analysis of

Algorithms Lab

2

Core Course-IX Software Engineering 4

Core Course –IX

Practical/Tutorial

Software Engineering Lab 2

8

Core Course-X Database Management

Systems

4

Core Course –X

Practical/Tutorial

Database Management

Systems Lab

2

Skill Enhancement Course-2 SEC – 2 4

Generic Elective – 4 4/5

Generic Electives - 4

Practical/Tutorial

 2/1

V Core Course-XI Internet Technologies 4

Core Course –XI

Practical/Tutorial

Internet Technologies Lab 2

Core Course-XII Theory of Computation 5

Core Course –XII

Practical/Tutorial

Theory of Computation

Tutorial

1

Discipline Specific Elective-1 DSE-1 4

Discipline Specific Elective-1

Practical/Tutorial

DSE-1 Lab 2

Discipline Specific Elective-2 DSE-2 4

Discipline Specific Elective-2

Practical/Tutorial

DSE- 2 Lab 2

VI

Core Course-XIII Artificial Intelligence 4

Core Course –XIII

Practical/Tutorial

Artificial Intelligence Lab 2

Core Course-XIV Computer Graphics 4

Core Course –XIV

Practical/Tutorial

Computer Graphics Lab 2

Discipline Specific Elective-3 DSE-3 4

Discipline Specific Elective-3

Practical/Tutorial

DSE-3 Lab 2

Discipline Specific Elective-4 DSE-4 4

Discipline Specific Elective-4

Practical/Tutorial

DSE-4 Lab 2

Total

Credits

 140

Discipline Specific Core Papers (DSC): (Credit: 06 each)

 (1 period/ week for tutorials or 4 periods/week of practical)

1. BHCS01 Programming Fundamentals using C++

2. BHCS02 Computer System Architecture

3. BHCS03 Programming in JAVA

4. BHCS04 Discrete Structure

5. BHCS05 Data Structures

6. BHCS06 Operating System

7. BHCS07 Computer Networks

8. BHCS08 Design and Analysis of Algorithms

9. BHCS09 Software Engineering

9

10. BHCS10 Database Management Systems

11. BHCS11 Internet Technologies

12. BHCS12 Theory of Computation

13. BHCS13 Artificial Intelligence

14. BHCS14 Computer Graphics

Discipline Specific Elective Papers: (Credit: 06 each)

(DSE-1, DSE-2, DSE-3, DSE-4)

DSE-1 (Choose any one)

a) BHCS15A Data Analysis and Visualization

b) BHCS15B System Programming

c) BHCS15C Combinatorial Optimization

DSE – 2 (Choose any one)

a) BHCS16A Digital Image Processing

b) BHCS16B Microprocessors

DSE – 3 (Choose any one)

a) BHCS17A Information Security

b) BHCS17B Data Mining

c) BHCS17C Advanced Algorithms

DSE – 4 (Choose any one)

a) BHCS18A Machine Learning

b) BHCS18B Deep Learning

c) BHCS18C Unix Network Programming

d) BHCS18D Project Work/ Dissertation

Other Discipline (Four papers of any one discipline) – GE 1 to GE 4

Skill Enhancement Courses (Credit: 04 each)

(SEC – 1, SEC – 2)

SEC -1(Choose any one)

a) BHCS19A Web Design and Development

b) BHCS19B Programming in Python

SEC – 2(Choose any one)

a) BHCS20A Android Programming

b) BHCS20B Introduction to R Programming

Note:

10

1. There will be one batch of 10-15 students for practical classes. The size of tutorial group

for papers without practical is recommended to be 8-10 students.

2. Each practical will carry 50 marks including 25 marks for continuous evaluation and 5

marks for the oral viva.

3. Colleges are advised and encouraged to conduct the practical using Free and Open

Source Software (FOSS)

4. At least two questions have to be compulsorily attempted in the final practical

examination.

5. Softcopy of all the practical must be maintained by each student for each practical paper.

6. Discipline specific core and elective courses (DSC and DSE) are to be taught as 4 Hrs

theory and 4 Hrs practical per week. In case the course has tutorials, it is to be taught as 5

Hrs theory and 1 Hr. tutorial per week

7. Skill enhancement courses (SEC) are to be taught as 2 Hrs theory and 4 Hrs practical per

week.

8. Practical given for the courses are only indicative, and by no means exhaustive. Instructor

may add more complex problems in laboratory depending on the ability of the students.

7. Courses for Programme B.Sc. (H) Computer Science

Programming Fundamentals using C++ (BHCS01) Discipline Specific Core

Course - (DSC)

Credit: 06

Course Objective

This course is designed to develop structured as well as object-oriented programming skills using

C++ programming language. The course not only focuses on basic C++ constructs but also

covers object-oriented programming features in-depth, namely Encapsulation, Abstraction,

Inheritance and Polymorphism for writing efficient codes.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Explain significance of object oriented paradigm

11

2. Solve programming problems using object oriented features.

3. Handle external files as well as exceptions.

4. Reuse classes to create new classes.

5. Handle exceptions in programs.

Detailed Syllabus

Unit 1

Introduction to C++: Overview of Procedural Programming and Object-Oriented

Programming, Using main () function, Header Files, Compiling and Executing Simple Programs

in C++.

Unit 2

Programming Fundamentals: Data types, Variables, Operators, Expressions, Arrays,

Keywords, Naming Convention, Decision making constructs (if, switch), Looping (for, while,

do…while), Type Casting, Input-output statements, Functions, Command Line

Arguments/Parameters.

Unit 3

Object Oriented Programming: Overview of Abstraction, Encapsulation, Inheritance, and

Polymorphism. Creating Classes and objects, Modifiers and Access Control, Constructors,

Implementation of Inheritance (Single and multilevel), Implementation of Polymorphism

(Function Overloading and Operator Overloading, Function Overriding).

Unit 4

Pointers and References: Static and dynamic memory allocation, Pointer and Reference

Variables, Pointers vs. References, Implementing Runtime polymorphism using pointers and

references.

Unit 5

Exception and File Handling: Using try, catch, throw, throws and finally; Nested try, creating

user defined exceptions, File I/O Basics, File Operations.

Practical

1. Write a program to compute the sum of the first n terms of the following series:

S = 1 - 1 / (2 ^ 2) + 1 / (3 ^ 3) - ... 1 / (n ^ n)

where ^ is exponentiation.

The number of terms n is to be taken from user through command line. If command line

12

argument is not found then prompt the user to enter the value of n.

2. Write a program to remove the duplicates from an array.

3. Write a program that prints a table indicating the number of occurrences of each alphabet

in the text entered as command line arguments.

4. Write a menu driven program to perform following operations on strings (without using

inbuilt string functions):

a) Show address of each character in string

b) Concatenate two strings.

c) Compare two strings

d) Calculate length of the string (use pointers)

e) Convert all lowercase characters to uppercase

f) Reverse the string

5. Write a program to merge two ordered arrays to get a single ordered array.

6. Write a program to search a given element in a set of N numbers using Binary search

(i) with recursion (ii) without recursion.

7. Write a program to calculate GCD of two numbers (i) with recursion (ii) without

recursion.

8. Create Matrix class. Write a menu-driven program to perform following Matrix

operations:

a) Sum

b) Product

c) Transpose

9. Define a class Person having name as a data member. Inherit two classes Student and

Employee from Person. Student has additional attributes as course, marks and year and

Employee has department and salary. Write display() method in all the three classes to

display the corresponding attributes. Provide the necessary methods to show runtime

polymorphism.

10. Create a class Triangle. Include overloaded functions for calculating area. Overload

assignment operator and equality operator.

11. Write a program to read two numbers p and q. If q is 0 then throw an exception else

display the result of p/q.

12. Rewrite Matrix class of Q8 with exception handling. Exceptions should be thrown by

the functions if matrices passed to them are incompatible and handled by main() function.

13

13. Create a class Student containing fields for Roll No., Name, Class, Year and Total

Marks. Write a program to store 5 objects of Student class in a file. Retrieve these records

from file and display them.

14. Copy the contents of one text file to another file, after removing all whitespaces.

References

1. Forouzan & Gilbert (2012). Computer Science: A Structured Approach Using C++. Cengage

Learning.

2. Schildt, H. (2003). C++: The Complete Reference. 4th edition. Tata McGraw-Hill.

Additional Resources

1. Balaguruswamy, E. (2017). Object Oriented Programming with C++ (7th ed.). McGraw Hill

Education.

2. Kanetkar, Y. P. (2015). Let us C++ .2nd edition. BPB Publishers.

3. Prata, S. (2015). C++ Primer Plus 6th edition. Pearson Education India.

4. Stroustrup, B. (2013). The C++ Programming Language .4th Edition. Pearson Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Introduction to C++: Overview of Procedural Programming and Object-

Oriented Programming, Using main () function, Header Files,

Compiling and Executing Simple Programs in C++

2 Data types, Variables , Operators, Expressions, Arrays, Keywords,

Naming Convention, Type Casting, Input-output statements

3 Decision making constructs (if, switch), Looping (for, while,

do…while)

14

4 Functions, Command Line Arguments/Parameters

5 – 9 Overview of Abstraction, Encapsulation, Inheritance, and

Polymorphism. Creating Classes and objects, Modifiers and Access

Control, Constructors, Inheritance (Single and multilevel),

Polymorphism (Function Overloading, Operator Overloading, Function

Overriding)

10-12 Static and dynamic memory allocation, Pointer variables, Reference

Variables, Pointers vs. References, Runtime polymorphism using

pointers and references

13-15 Exception and File Handling: Using try, catch, throw, throws and

finally; Nested try, creating user defined exceptions, File I/O Basics,

File Operations

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Procedural and Object Oriented programming, abstraction, inheritance, polymorphism, pointers,

exception and file handling

Computer System Architecture (BHCS02) Discipline Specific Core Course -

(DSC) Credit: 06

Course Objective

This course introduces the students to the fundamental concepts of digital computer organization,

design and architecture. It aims to develop a basic understanding of the building blocks of the

computer system and highlights how these blocks are organized together to architect a digital

computer system.

15

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Design Combinational Circuits using basic building blocks. Simplify these circuits using

Boolean algebra and Karnaugh maps. Differentiate between combinational circuits and

sequential circuits.

2. Represent data in binary form, convert numeric data between different number systems and

perform arithmetic operations in binary.

3. Determine various stages of instruction cycle and describe interrupts and their handling.

4. Explain how CPU communicates with memory and I/O devices.

5. Simulate the design of a basic computer using a software tool

Detailed Syllabus

Unit 1

Digital Logic Circuits: Logic Gates, truth tables, Boolean Algebra, digital circuits,

combinational circuits, sequential circuits, circuit simplification using Karnaugh map, Don’t

Care Conditions, flip-flops, characteristic tables

Unit 2

Digital Components: Half Adder, Full Adder, Decoders, Multiplexers, Registers and Memory

Units

Unit 3

Data Representation and Basic Computer Arithmetic: Number system, complements, fixed

and floating point representation. Alphanumeric representation. Addition, subtraction.

Unit 4

Basic Computer Organization and Design: Common Bus system, instruction codes, instruction

format, instruction set completeness, Sequence Counter, timing and control, instruction cycle,

memory reference instructions and their implementation using arithmetic, logical, program

control, transfer and input output micro-operations, interrupt cycle.

Unit 5

Central Processing Unit: Micro programmed Control vs Hardwired Control, lower level

programming languages, Instruction format, accumulator, general register organization, stack

organization, zero-address instructions, one-address instructions, two-address instructions, three-

address instructions, Addressing Modes, RISC, CISC architectures, pipelining and parallel

processing.

16

Unit 6

Memory Organization and Input-Output Organization: Input-Output Organization: Peripheral

Devices, I/O interface, I/O vs. Memory Bus, Programmed I/O, Interrupt-Driven I/O, Direct

Memory Access

Practical

(Use Simulator – CPU Sim 3.6.9 or any higher version for the implementation)

1. Create a machine based on the following architecture :

Registers

IR DR AC AR PC I E

0 15 0 15 0 15 0 11 0 11 1 bit 1 Bit

Memory

4096 words

8 bits per word

Instruction format

 0 3 4 15

Opcode Address

Basic Computer Instructions

Memory Reference Register Reference

Symbol Hex Symbol Hex

AND 0xxx

Direct

Addressing

CLA E800

ADD 2xxx CLE E400

LDA 4xxx CMA E200

STA 6xxx CME E100

BUN 8xxx CIR E080

 CIL E040

ISZ Cxxx INC E020

AND_I 1xxx

Indirect

Addressing

SPA E010

ADD_I 3xxx SNA E008

LDA_I 5xxx SZA E004

STA_I 7xxx SZE E002

BUN_I 9xxx HLT E001

ISZ_I Dxxx

17

 Refer to Chapter-5 of reference 1 for description of instructions.

Design the register set, memory and the instruction set. Use this machine for the assignments

of this section.

2. Create a Fetch routine of the instruction cycle.

3. Write an assembly program to simulate ADD operation on two user-entered numbers.

4. Write an assembly program to simulate SUBTRACT operation on two user-entered

numbers.

5. Write an assembly program to simulate the following logical operations on two user-

entered numbers.

1. AND

2. OR

3. NOT

4. XOR

5. NOR

6. NAND

6. Write an assembly program to simulate MULTIPLY operation on two user-entered

numbers.

7. Write an assembly program for simulating following memory-reference instructions.

1. ADD

2. LDA

3. STA

4. BUN

5. ISZ

8. Write an assembly language program to simulate the machine for following register

reference instructions and determine the contents of AC, E, PC, AR and IR registers in

decimal after the execution:

1. CLA

2. CMA

3. CME

4. HLT

18

9. Write an assembly language program to simulate the machine for following register

reference instructions and determine the contents of AC, E, PC, AR and IR registers in

decimal after the execution:

1. INC

2. SPA

3. SNA

4. SZE

10. Write an assembly language program to simulate the machine for following register

reference instructions and determine the contents of AC, E, PC, AR and IR registers in

decimal after the execution:

1. CIR

2. CIL

11. Write an assembly program that reads in integers and adds them together; until a negative

non-zero number is read in. Then it outputs the sum (not including the last number).

12. Write an assembly program that reads in integers and adds them together; until zero is

read in. Then it outputs the sum.

13. Create a machine for the following instruction format:

Instruction format

15 14 13 12 11 0

OP code I Address

The instruction format contains a 3-bit opcode, a 1-bit addressing mode and a 12-bit address.

Write an assembly program to simulate the machine for addition of two numbers with I= 0

(Direct Address) and address part = 082. The instruction to be stored at address 022 in RAM,

initialize the memory word with any decimal value at address 082. Determine the contents of

AC, DR, PC, AR and IR in decimal after the execution.

14. Simulate the machine for the memory-reference instruction referred in above question

with I= 1 (Indirect Address) and address part = 082. The instruction to be stored at

address 026 in RAM. Initialize the memory word at address 082 with the value 298.

Initialize the memory word at address 298 with operand 632 and AC with 937. Determine

the contents of AC, DR, PC, AR and IR in decimal after the execution.

19

15. The instruction format contains 3 bits of opcode, 12 bits for address and 1 bit for

addressing mode. There are only two addressing modes, I = 0 is direct addressing and I =

1 is indirect addressing. Write an assembly program to check the I bit to determine the

addressing mode and then jump accordingly.

References

1. Mano, M. (1992). Computer System Architecture. 3rd edition. Pearson Education.

Additional Resources

1. Mano, M. (1995). Digital Design. Pearson Education Asia.

2. Null, L., & Lobur, J. (2018). The Essentials of Computer Organization and Architecture. 5th

edition. (Reprint) Jones and Bartlett Learning.

3. Stallings, W. (2010). Computer Organization and Architecture Designing for Performance 8th

edition. Prentice Hall of India.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 – 2

Unit 1 - Introduction:

Digital Logic Gates, Flipflops and their characterstic table, Logic

circuit simplification using Boolean Algebra and Karnaugh Map,

Don’t Care conditions.

Combinational Circuits, Sequential Circuits.

3 – 4

Unit 2 - Digital Components:

Decoders, Encoders, Multiplexers, Binary Adder, Binary Adder-

Subtractor, Binary Incrementer, Registers and Memory Units

5 – 6 Unit 3 - Data Representation:

20

Binary representation of data, representation of alpha data,

representation of numeric data in different number systems,

conversion between number systems, complements, representation of

decimal numbers, representation of signed and unsigned numbers,

addition and subtraction of signed and unsigned numbers and

overflow detection.

7 – 11

Unit 4 - Operations and Control:

Arithmetic and logical micro-operations, micro programmed control

vs. hardwired control, instruction format, instruction set

completeness, timing and control, instruction cycle, memory

reference instructions and their implementation using arithmetic,

logical, program control, transfer and input output micro operations,

interrupt cycle.

12 - 13

Unit 5 - Instructions:

Instruction format illustration using single accumulator organization,

general register organization and stack organization, Addressing

Modes, zero-address instructions, one-address instructions, two-

address instructions and three-address instructions,

14 - 15

Unit 6 - Peripheral Devices:

I/O interface, I/O vs. Memory Bus, Isolated I/O, Memory Mapped

I/O, Direct Memory Access

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Combinational and sequential circuits, memory organization, computer organization, CPU

design, parallelism.

Programming in JAVA (BHCS03) Discipline Specific Core Course - (DSC)

Credit: 06

21

Course Objective

This course adds to the basic programming language skills acquired by the student in earlier

semesters. The students are exposed to the advanced features available in Java such as exception

handling, file handling, interfaces, packages and GUI programming.

Course Learning Outcomes

On successful completion of the course the student will be

1. Implement Exception Handling and File Handling.

2. Implement multiple inheritance using Interfaces.

3. Logically organize classes and interfaces using packages.

4. Use AWT and Swing to design GUI applications.

Detailed Syllabus

Unit 1

Review of Object Oriented Programming and Java Fundamentals: Structure of Java

programs, Classes and Objects, Data types, Type Casting, Looping Constructs.

Unit 2

Interfaces Interface basics; Defining, implementing and extending interfaces; Implementing

multiple inheritance using interfaces Packages Basics of packages, Creating and accessing

packages, System packages, Creating user defined packages

Unit 3

Exception handling using the main keywords of exception handling: try, catch, throw, throws

and finally; Nested try, multiple catch statements, creating user defined exceptions

Unit 4

File Handling Byte Stream, Character Stream, File I/O Basics, File Operations

Unit 5

AWT and Event Handling: The AWT class hierarchy, Events, Event sources, Event classes,

Event Listeners, Relationship between Event sources and Listeners, Delegation event model,

Creating GUI applications using AWT.

Unit 6

Swing Introduction to Swing, Swing vs. AWT, Hierarchy for Swing components, Creating GUI

applications using Swing.

22

Practical

1. Design a class Complex having a real part (x) and an imaginary part (y). Provide methods

to perform the following on complex numbers:

1. Add two complex numbers.

2. Multiply two complex numbers.

3. toString() method to display complex numbers in the form: x + i y

2. Create a class TwoDim which contains private members as x and y coordinates in

package P1. Define the default constructor, a parameterized constructor and override

toString() method to display the co-ordinates. Now reuse this class and in package P2

create another class ThreeDim, adding a new dimension as z as its private member.

Define the constructors for the subclass and override toString() method in the subclass

also. Write appropriate methods to show dynamic method dispatch. The main() function

should be in a package P.

3. Define an abstract class Shape in package P1. Inherit two more classes: Rectangle in

package P2 and Circle in package P3. Write a program to ask the user for the type of

shape and then using the concept of dynamic method dispatch, display the area of the

appropriate subclass. Also write appropriate methods to read the data. The main()

function should not be in any package.

4. Create an exception subclass UnderAge, which prints “Under Age” along with the age

value when an object of UnderAge class is printed in the catch statement. Write a class

exceptionDemo in which the method test() throws UnderAge exception if the variable age

passed to it as argument is less than 18. Write main() method also to show working of the

program.

5. Write a program to implement stack. Use exception handling to manage underflow and

overflow conditions.

6. Write a program that copies content of one file to another. Pass the names of the files

through command-line arguments.

7. Write a program to read a file and display only those lines that have the first two

characters as '//' (Use try with resources).

8. Write a program to create an Applet. Create a frame as a child of applet. Implement

mouseClicked(), mouseEntered() and mouseExited() events for applet. Frame is visible

23

when mouse enters applet window and hidden when mouse exits from the applet window.

9. Write a program to display a string in frame window with pink color as background.

10. Write a program to create an Applet that has two buttons named “Red” and “Blue”. When

a button is pressed the background color of the applet is set to the color named by the

button’s label.

11. Create an applet which responds to KEY_TYPED event and updates the status window

with message (“Typed character is: X”). Use adapter class for other two events.

12. Create an applet with two buttons labeled ‘A’ and ‘B’. When button ‘A’ is pressed, it

displays your personal information (Name, Course, Roll No, College) and when button ‘B’

is pressed, it displays your CGPA in previous semester.

13. Write a program that creates a Banner and then creates a thread to scrolls the message in

the banner from left to right across the applet’s window.

14. Rewrite the applet programs using Swing.

References

1. Schildt, H. (2018). Java: The Complete Reference. 10th edition. McGraw-Hill Education.

Additional Resources:

1. Balaguruswamy E. (2014). Programming with JAVA: A Primer. 5th edition. India: McGraw

Hill Education

2. Horstmann, C. S. (2017). Core Java - Vol. I – Fundamentals (Vol. 10). Pearson Education

3. Schildt, H., & Skrien, D. (2012). Java Fundamentals - A Comprehensive Introduction. India:

McGraw Hill Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

24

Week Content

1

Review of Object Oriented Programming and Java Fundamentals

Structure of Java programs, Classes and Objects, Data types, Type Casting, Looping

Constructs

2

Interfaces

Interface basics; Defining, implementing and extending interfaces; Implementing

multiple inheritance using interfaces

3

Packages

Basics of packages, Creating and accessing packages, System packages, Creating

user defined packages

4

Exception Handling : Using the main keywords of exception handling: try, catch,

throw, throws and finally; Nested try, Multiple catch statements, Creating user

defined exceptions

5 File Handling: Byte Stream, Character Stream, File I/O Basics, File Operations

6-9

AWT and Event Handling

The AWT class hierarchy ,Events, Event sources, Event classes, Event Listeners,

Relationship between Event sources and Listeners, Delegation event model, Creating

GUI applications using AWT, Creating GUI applications using AWT

10-15
Swing: Introduction to Swing, Swing vs. AWT, Hierarchy for Swing components,

Creating GUI applications using Swing, Creating GUI applications using Swing

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Objects and classes, interfaces, exceptional handling, file handling

Discrete Structures (BHCS04) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

The course aims to introduce the students to Boolean algebra, sets, relations, functions,

principles of counting, and growth functions so that these concepts may be used effectively in

other courses.

Course Learning Outcomes

On successful completion of the course, students will be able to:

25

1. Define mathematical structures (relations, functions, sequences, series, and graphs) and use

them to model real life situations.

2. Understand (trace) and construct simple mathematical proofs using logical arguments.

3. Solve class room puzzles based on counting principles.

4. Compare functions and relations with respect to their growth for large values of the input.

Detailed Syllabus

Unit 1

Introduction: Sets - finite and infinite sets, uncountable infinite sets; functions, relations,

properties of binary relations, closure, partial ordering relations; counting - Pigeonhole Principle,

permutation and combination; mathematical induction, Principle of Inclusion and Exclusion.

Unit 2

Growth of Functions: asymptotic notations, summation formulas and properties, bounding

summations, approximation by integrals.

Unit 3

Recurrence: recurrence relations, generating functions, linear recurrence relations with constant

coefficients and their solution, recursion trees, Master Theorem

Unit 4

Graph Theory: basic terminology, models and types, multi-graphs and weighted graphs, graph

representation, graph isomorphism, connectivity, Euler and Hamiltonian Paths and Circuits,

planar graphs, graph coloring, Trees, basic terminology and properties of Trees, introduction to

spanning trees.

Unit 5

Propositional Logic: logical connectives, well-formed formulas, tautologies, equivalences,

Inference Theory

Practical

1. Write a Program to create a SET A and determine the cardinality of SET for an input

array of elements (repetition allowed) and perform the following operations on the

SET:

a) ismember (a, A): check whether an element belongs to set or not and return value as

true/false.

b) powerset(A): list all the elements of power set of A.

26

2. Create a class SET and take two sets as input from user to perform following SET

Operations:

a) Subset: Check whether one set is a subset of other or not.

b) Union and Intersection of two Sets.

c) Complement: Assume Universal Set as per the input elements from the user.

d) Set Difference and Symmetric Difference between two SETS

e) Cartesian Product of Sets.

3. Create a class RELATION, use Matrix notation to represent a relation. Include functions

to check if the relation is Reflexive, Symmetric, Anti-symmetric and Transitive. Write a

Program to use this class.

4. Use the functions defined in Ques 3 to check whether the given relation is:

a) Equivalent, or

b) Partial Order relation, or

c) None

5. Write a Program to implement Bubble Sort. Find the number of comparisons during each

pass and display the intermediate result. Use the observed values to plot a graph to

analyse the complexity of algorithm.

6. Write a Program to implement Insertion Sort. Find the number of comparisons during

each pass and display the intermediate result. Use the observed values to plot a graph to

analyse the complexity of algorithm.

7. Write a Program that generates all the permutations of a given set of digits, with or

without repetition. (For example, if the given set is {1,2}, the permutations are 12 and

21). (One method is given in Liu)

8. Write a Program to calculate Permutation and Combination for an input value n and r

using recursive formula of
n
Cr and

n
Pr .

9. For any number n, write a program to list all the solutions of the equation x1 + x2 + x3 +

…+ xn = C, where C is a constant (C<=10) and x1, x2,x3,…,xn are nonnegative integers

using brute force strategy.

10. Write a Program to accept the truth values of variables x and y, and print the truth table

of the following logical operations:

a) Conjunction f) Exclusive NOR

b) Disjunction g) Negation

c) Exclusive OR h) NAND

d) Conditional i) NOR

e) Bi-conditional

11. Write a Program to store a function (polynomial/exponential), and then evaluate the

27

polynomial. (For example store f(x) = 4n3 + 2n + 9 in an array and for a given value of n, say

n = 5, evaluate (i.e. compute the value of f(5)).

12. Write a Program to represent Graphs using the Adjacency Matrices and check if it is a

complete graph.

13. Write a Program to accept a directed graph G and compute the in-degree and out-degree

of each vertex.

14. Given a graph G, write a Program to find the number of paths of length n between the

source and destination entered by the user.

15. Given an adjacency matrix of a graph, write a program to check whether a given set of

vertices {v1,v2,v3.....,vk} forms an Euler path / Euler Circuit (for circuit assume vk=v1).

16. Given a full m-ary tree with i internal vertices, Write a Program to find the number of

leaf nodes.

References

1. Mohapatra, & Liu, C. L. (2012). Elements of Discrete mathematics. 4th edition. McGraw Hill

Education.

2. Rosen, K. H. (2011). Discrete Mathematics and Its Applications. 7th edition. Tata McGraw

Hill Education.

Additional Resources

1. Albertson, M. O., & Hutchinson, J.P., (1988). Discrete Mathematics with Algorithms. John

Wiley and Sons.

 2. Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (2009). Introduction to algorithms. 3rd

edition. MIT Press.

3. Hein, J. L. (2015). Discrete Structures, Logic, and Computability. 4th edition. Jones and

Bartlett Learning.

4. Hunter, D. J. (2011). Essentials of Discrete Mathematics. 2nd edition. Jones and Bartlett

Learning

 Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

28

Tentative weekly teaching plan is as follows:

Week Content

1-3

Sets

Finite and infinite sets, uncountable infinite sets; functions, relations,

properties of binary relations, closure, partial ordering relations,

pigeonhole principle, permutation and combination, induction, inclusion

exclusion

4-5

Growth of Functions

 Asymptotic notations, summation formulas and properties, summation

formulas and properties (contd.), bounding summations, approx. by

integrals

6-8

Recurrences

Recurrence relations, generating functions, linear recurrence relations

with constant coefficients and their solution, recursion trees, Master’s

Theorem

9-13

 Graph Theory

Basic terminology, models and types, multigraphs and weighted graphs,

graph representation, graph isomorphism, connectivity, Euler and

Hamiltonian Paths and Circuits, planar graphs, graph coloring, Trees,

basic terminology and properties of Trees, introduction to spanning trees.

14-15

 Prepositional Logic

Logical connectives, well-formed formulas, tautologies, equivalences,

inference theory

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

recurrence, trees and graphs, combinatorics, inductive and deductive reasoning, asymptotic

complexity.

Data Structures (BHCS05) Discipline Specific Core Course - (DSC)

29

Credit: 06

Course Objective

This course aims at developing the ability to use basic data structures like array, stacks, queues,

lists, trees and hash tables to solve problems. C++ is chosen as the language to understand

implementation of these data structures.

Course Learning Outcomes

At the end of the course, students will be able to:

1. Implement and empirically analyse linear and non-linear data structures like Arrays, Stacks,

Queues, Lists, Trees, Heaps and Hash tables as abstract data structures. (RBT L2/3)

2. Write a program, choosing a data structure, best suited for the application at hand. (RBT L3/4)

3. Re-write a given program that uses one data structure, using a more appropriate/efficient data

structure (RBT L4)

4. Write programs using recursion for simple problems. Explain the advantages and

disadvantages of recursion.(RBT L2/L3)

5. Identify Ethical Dilemmas.

Detailed Syllabus

Unit 1

Arrays: single and multi-dimensional arrays, analysis of insert, delete and search operations in

arrays (both linear search and binary search), implementing sparse matrices, applications of

arrays to sorting: selection sort, insertion sort, bubble sort, comparison of sorting techniques via

empirical studies. Introduction to Vectors.

Unit 2

Linked Lists: Singly- linked, doubly-linked and circular lists, analysis of insert, delete and

search operations in all the three types, implementing sparse matrices. Introduction to Sequences.

Unit 3

Queues: Array and linked representation of queue, de-queue, comparison of the operations on

queues in the two representations. Applications of queues.

Unit 4

30

Stacks: Array and linked representation of stacks, comparison of the operations on stacks in the

two representations, implementing multiple stacks in an array; applications of stacks: prefix,

infix and postfix expressions, utility and conversion of these expressions from one to another;

applications of stacks to recursion: developing recursive solutions to simple problems,

advantages and limitations of recursion

Unit 5

Trees and Heaps: Introduction to tree as a data structure; binary trees, binary search trees,

analysis of insert, delete, search operations, recursive and iterative traversals on binary search

trees. Height-balanced trees (AVL), B trees, analysis of insert, delete, search operations on AVL

and B trees.

Introduction to heap as a data structure. analysis of insert, extract-min/max and delete-min/max

operations, applications to priority queues.

Unit 6

Hash Tables: Introduction to hashing, hash tables and hashing functions -insertion, resolving

collision by open addressing, deletion, searching and their analysis, properties of a good hash

function.

Practical

1. Write a program to search an element from a list. Give user the option to perform Linear or

Binary search. Use Template functions.

2. WAP using templates to sort a list of elements. Give user the option to perform sorting using

Insertion sort, Bubble sort or Selection sort.

3. Implement Linked List using templates. Include functions for insertion, deletion and search of

a number, reverse the list and concatenate two linked lists (include a function and also overload

operator +).

4. Implement Doubly Linked List using templates. Include functions for insertion, deletion and

search of a number, reverse the list.

5. Implement Circular Linked List using templates. Include functions for insertion, deletion and

search of a number, reverse the list.

6. Perform Stack operations using Linked List implementation.

7. Perform Stack operations using Array implementation. Use Templates.

8. Perform Queues operations using Circular Array implementation. Use Templates.

9. Create and perform different operations on Double-ended Queues using Linked List

implementation.

31

10. WAP to scan a polynomial using linked list and add two polynomial.

11. WAP to calculate factorial and to compute the factors of a given no. (i)using recursion, (ii)

using iteration

12. (ii) WAP to display fibonacci series (i)using recursion, (ii) using iteration

13. WAP to calculate GCD of 2 number (i) with recursion (ii) without recursion

14. WAP to create a Binary Search Tree and include following operations in tree: (a) Insertion

(Recursive and Iterative Implementation) (b) Deletion by copying (c) Deletion by Merging (d)

Search a no. in BST (e) Display its preorder, postorder and inorder traversals Recursively (f)

Display its preorder, postorder and inorder traversals Iteratively (g) Display its level-by-level

traversals (h) Count the non-leaf nodes and leaf nodes (i) Display height of tree (j) Create a

mirror image of tree (k) Check whether two BSTs are equal or not

15. WAP to convert the Sparse Matrix into non-zero form and vice-versa.

16. WAP to reverse the order of the elements in the stack using additional stack.

17. WAP to reverse the order of the elements in the stack using additional Queue.

18. WAP to implement Diagonal Matrix using one-dimensional array.

19. WAP to implement Lower Triangular Matrix using one-dimensional array.

20. WAP to implement Upper Triangular Matrix using one-dimensional array.

21. WAP to implement Symmetric Matrix using one-dimensional array.

22. WAP to create a Threaded Binary Tree as per inorder traversal, and implement operations

like finding the successor / predecessor of an element, insert an element, inorder traversal.

23. WAP to implement various operations on AVL Tree.

24. WAP to implement heap operations.

References

1. Drozdek, A., (2012), Data Structures and algorithm in C++. 3rd edition. Cengage Learning.

2. Goodrich, M., Tamassia, R., & Mount, D., (2011). Data Structures and Algorithms Analysis in

C++. 2nd edition. Wiley.

Additional Resources

1. Foruzan, B.A. (2012) Computer Science: A Structured Approach Using C++, Cengage

Learning

2. Lafore, R. (2008). Object Oriented Programming in C++. 4th edition. SAMS Publishing.

32

3. Sahni, S. (2011). Data Structures, Algorithms and applications in C++. 2ndEdition,

Universities Press

4. Tenenbaum, A. M., Augenstein, M. J., & Langsam Y., (2009), Data Structures Using C and

C++. 2nd edition. PHI.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 -2 Single and Multi-dimensional arrays, row and column major –order, static

vs. dynamic data structures

3-4 Linked Lists, doubly linked list, circular lists, implementation of link list in

array, using pointers, analysis of linked Lists operations, sparse matrices,

sequences

5-6 Queues, storage and retrieval operations, implementation of queues,

7-8 Stacks, storage and retrieval operations, implementation of stacks,

applications of stacks

9-10 Binary Trees, Recursive and iterative methods of tree traversal

11-13 AVL and B Trees

14 Heaps

15 Hash Tables

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Arrays and linked lists, stacks, queues, tree, heap, hashing, recursion

33

Operating system (BHCS06) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

The course introduces the students to different types of operating systems. Operating system

modules such as memory management, process management and file management are covered in

detail.

Course Learning Outcomes

On successful completion of the course, the students will be able to:

1. Implement multiprogramming, multithreading concepts for a small operating system.

2. Create, delete, and synchronize processes for a small operating system.

3. Implement simple memory management techniques.

4. Implement CPU and disk scheduling algorithms.

5. Use services of modern operating system efficiently

6. Implement a basic file system.

Detailed Syllabus

Unit 1

Introduction: Operating systems (OS) definition, Multiprogramming and Time Sharing

operating systems, real time OS, Multiprocessor operating systems, Multicore operating systems,

Various computing environments.

Unit 2

Operating System Structures: Operating Systems services, System calls and System programs,

operating system architecture (Micro Kernel, client server) operating

Unit 3

Process Management: Process concept, Operation on processes, Multi-threaded processes and

models, Multicore systems, Process scheduling algorithms, Process synchronization. The

Critical-section problem and deadlock characterization, deadlock handling.

Unit 4

34

Memory Management: Physical and Logical address space; Memory allocation strategies -

Fixed and Variable Partitions, Paging, Segmentation, Demand Paging and virtual memory, Page

Replacement algorithm.

Unit 5

File and I/O Management: Directory structure, File access methods, Disk scheduling algorithms.

Practical

1. Write a program (using fork() and/or exec() commands) where parent and child execute: a)

same program, same code. b) same program, different code. - c) before terminating, the parent

waits for the child to finish its task.

2. Write a program to report behaviour of Linux kernel including kernel version, CPU type and

model. (CPU information)

3. Write a program to report behaviour of Linux kernel including information on 19 configured

memory, amount of free and used memory. (memory information)

4. Write a program to print file details including owner access permissions, file access time,

where file name is given as argument.

5. Write a program to copy files using system calls.

6. Write a program to implement FCFS scheduling algorithm.

7. Write a program to implement Round Robin scheduling algorithm.

8. Write a program to implement SJF scheduling algorithm.

9. Write a program to implement non-preemptive priority based scheduling algorithm.

10. Write a program to implement preemptive priority based scheduling algorithm.

11. Write a program to implement SRJF scheduling algorithm.

12. Write a program to calculate sum of n numbers using thread library.

13. Write a program to implement first-fit, best-fit and worst-fit allocation strategies.

 References

1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2008). Operating Systems Concepts. 8th edition..

John Wiley Publications.

Additional Resources

1. Dhamdhere, D. M. (2006). Operating Systems: A Concept-based Approach. 2nd edition. Tata

McGraw-Hill Education.

35

2. Kernighan, B. W., & Rob Pike, R. (1984). The Unix programming environment (Vol. 270).

Englewood Cliffs, NJ: Prentice-Hall

3. Stallings, W. (2018). Operating Systems: Internals and Design Principles. 9th edition. Pearson

Education.

4. Tanenbaum, A. S. (2007). Modern Operating Systems. 3rd edition. Pearson Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Operating System, Definition and its purpose, Time sharing, Multiprogramming and

Multiprocessing, Operating System Operations

2 Operating System Services, User and Operating System Interface, System Calls and

its Types.

3 Operating system Design and Structure, System Programs, System Boot, Process

4 Operations on Processes, Inter process communication, Shared memory.

5 Multithreading Models, Multicore Programming, Thread Libraries

6 Process Scheduling criteria, Process Scheduling Algorithms, Multiple Processor

Scheduling.

7 Process Synchronization, Critical Section Problem, Semaphores.

8 Deadlock Characterization, Methods for handling deadlocks.

9-10 Memory Allocation Strategies-Fixed and Variable partition, Swapping, Logical and

Physical Address Space, Paging, Structure of Page Table and its Variations, Shared

pages, Segmentation

11-12 Virtual memory, Page Replacement Algorithms, Allocation of frames, Thrashing,

Working set model.

36

13-14 File System , File Characteristics, Access methods, Directory and Disk structure ,

File system structure and implementation, Directory implementation, Free space

Implementation, File Allocation methods.

15 Overview of Secondary Devices, Disk Scheduling Algorithms

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Types of operating systems, memory management, process management, file and I/O

management

Computer Networks (BHCS07) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

This course covers the concepts of data communication and computer networks. It comprises of

the study of the standard models for the layered protocol architecture to communicate between

autonomous computers in a network and also the main features and issues of communication

protocols for different layers. Topics covered comprise of introduction to OSI and TCP/IP

models also.

Course Learning Outcomes

On successful completion of the course, the student will be able to:

1. Describe the hardware, software components of a network and their interrelations.

2. Compare OSI and TCP/IP network models.

3. Describe, analyze and compare different data link, network, and transport layer protocols.

4. Design/implement data link and network layer protocols in a simulated networking

environment.

37

Detailed Syllabus

Unit 1

Introduction: Types of computer networks, Internet, Intranet, Network topologies, Network

classifications.

Unit 2

Network Architecture Models: Layered architecture approach, OSI Reference Model, TCP/IP

Reference Model.

Unit 3

Physical Layer: Analog signal, digital signal, digital modulation techniques (ASK, PSK, QAM),

encoding techniques, maximum data rate of a channel, transmission media (guided transmission

media, wireless transmission, satellite communication), multiplexing (frequency division

multiplexing, time division multiplexing, wavelength division multiplexing).

Unit 4

Data Link MAC Layer: Data link layer services, error-detection and correction techniques,

error recovery protocols (stop and wait, go back n, selective repeat), multiple access protocols,

(TDMA/FDP, CDMA/FDD/CSMA/CD, CSMA/CA), Datalink and MAC addressing, Ethernet,

data link layer switching, point-to-point protocol.

Unit 5

Network layer: Networks and Inter networks, virtual circuits and datagrams, addressing, sub

netting, Routing- (Distance vector and link state routing), Network Layer Protocols- (ARP,

IPV4, ICMP, IPV6).

UNIT 6

Transport and Application Layer: Process to process Delivery- (client server paradigm,

connectionless versus connection oriented service, reliable versus unreliable); User Datagram

Protocols, TCP/IP protocol, Flow Control.

UNIT 7

Protocols: FTP (File Transfer protocol), SMTP (Simple, Mail Transfer Protocol), Telnet and

remote login protocol, WWW (World Wide Web), HTTP (Hyper Text Transfer protocol),

Uniform Resource Locator, HTML and forms.

Practical

1. Simulate Cyclic Redundancy Check (CRC) error detection algorithm for noisy channel.

2. Simulate and implement stop and wait protocol for noisy channel.

38

3. Simulate and implement go back n sliding window protocol.

4. Simulate and implement selective repeat sliding window protocol.

5. Simulate and implement distance vector routing algorithm

6. Simulate and implement Dijkstra algorithm for shortest path routing.

References:

1. Forouzan, B. A. (2017). Data Communication and Networking. McGraw-Hill Education

2. Tanenbaum, A.S. & Wethrall,D.J. (2012). Computer Networks. Pearson Education

Additional References

1. Kozierok, C.M. The TCP/IP Guide, free online resource. (2005.). Retrieved from

http://www.tcpipguide.com/free/index.htm

2. Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach. Pearson

Education India

3. Stallings, W. (2017). Data and Computer Communications. 10th edition. Pearson Education

India.

Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Topics to be covered

1 Introduction to Computer Networks: Network definition, types of

computer networks, Internet, intranet, network topologies, and network

classifications.

2 Network Performance issues and concepts: Putting network performance

in perspective, balancing network performance with key non-performance

characteristics.

3 Performance measurements: speed, bandwidth, throughput and latency;

simplex, half duplex and full duplex operation; Quality of service.

4 Network Architecture Models: Layered Approach, OSI Reference Model,

TCP/IP Reference Model.

39

5 Network devices: hubs, switches, bridges, routers, gateways.

 Physical Layer: Analog signal, digital signal.

6 Physical Layer: digital modulation techniques (ASK, PSK, QAM),

encoding techniques, frequency division multiplexing, time division

multiplexing.

7 Physical Layer: switching techniques- Circuit, packet and message

switching, guided transmission media, wireless transmission, satellite

communication

Data Link Layer: data link layer services, framing and flow control.

8 Data Link Layer: error-detection and correction techniques error recovery

protocols (stop and wait (for noiseless and noisy environment)).

9 Data Link Layer: error recovery protocols (go back n, selective repeat),

multiple access protocols, addressing, Ethernet, data link layer switching,

point-to-point protocol.

10-11 Network layer: Inter networks, virtual circuits and datagrams, addressing-

sub netting, Routing- distance vector and link state routing, Network

Layer Protocols- ARP, IPV4, ICMP, IPV6.

12 Transport Layer: Process to process Delivery- client server paradigm,

connectionless versus connection oriented service, reliable versus

unreliable; user datagram Protocol- well known ports, user datagram.

13 Transport Layer: UDP Operation, use of UDP, TCP/IP protocol - well

known ports, TCP Service, features.

14 Transport Layer: TCP connection establishment and release, Flow

Control.

Application Layer: Domain name space, Distribution of Name space, DNS

in the Internet, Resolution.

15 Application Layer: WWW and HTTP, Architecture- Client server model,

Uniform Resource Locator, HTTP-Transaction, HTTP operational model

and client server communication, HTTP message format.

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

40

Keywords

network topologies, OSI model, TCP/IP model, client server model.

Design and Analysis of Algorithms (BHCS08) Discipline Specific Core Course -

(DSC) Credit: 06

 Course Objective

This course is designed to introduce the students to design and analyse algorithms in terms of

efficiency and correctness. The course focuses on highlighting difference between various

problem solving techniques for efficient algorithm design.

Course Learning Outcomes:

On successful completion of this course, the student will be able to:

1. Given an algorithm, identify the problem it solves.

2. Write algorithms choosing the best one or a combination of two or more of the algorithm

design techniques: Iterative, divide-n-conquer, Greedy, Dynamic Programming using appropriate

data structures.

3. Write proofs for correctness of algorithms.

4. Re-write a given algorithm replacing the (algorithm design) technique used with a more

appropriate/efficient (algorithm design) technique.

Detailed Syllabus

Unit 1

Algorithm Design Techniques: Iterative technique: Applications to Sorting and Searching

(review), their correctness and analysis. Divide and Conquer: Application to Sorting and

Searching (review of binary search), merge sort, quick sort, their correctness and analysis.

Dynamic Programming: Application to various problems (for reference; Weighted Interval

Scheduling, Sequence Alignment, Knapsack), their correctness and analysis. Greedy Algorithms:

Application to various problems, their correctness and analysis.

Unit 2

41

More on Sorting and Searching: Heapsort, Lower Bounds using decision trees, sorting in

Linear Time - Bucket Sort, Radix Sort and Count Sort, Medians & Order Statistics, complexity

analysis and their correctness.

Unit 3

Advanced Analysis Technique: Amortized analysis

Unit 4

Graphs: Graph Algorithms - Breadth First Search, Depth First Search and its Applications.

Practical

1. a)Implement Insertion Sort (The program should report the number of comparisons)

b)Implement Merge Sort(The program should report the number of comparisons)

2. Implement Heap Sort (The program should report the number of comparisons)

3. Implement Randomized Quick sort (The program should report the number of comparisons)

4. Implement Radix Sort

5. Create a Red-Black Tree and perform following operations on it: i. Insert a node ii. Delete a

node iii. Search for a number & also report the color of the node containing this number.

6. Write a program to determine the LCS of two given sequences

7. Implement Breadth-First Search in a graph

8. Implement Depth-First Search in a graph

9. Write a program to determine the minimum spanning tree of a graph

For the algorithms at S.No 1 to 3 test run the algorithm on 100 different inputs of sizes varying

from 30 to 1000. Count the number of comparisons and draw the graph. Compare it with a graph

of nlogn.

References

1. Kleinberg, J., & Tardos, E. (2013). Algorithm Design. 1st edition. Pearson Education India.

Additional Resources

1. Cormen, T.H., Leiserson,C.E. Rivest, R.L., & Stein, C.(2015). Introduction to Algorithms. 3rd

edition. PHI.

2. Sarabasse & Gleder A. V. (1999). Computer Algorithm – Introduction to Design and Analysis.

3rd edition. Pearson Education

42

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Iterative technique: Applications to Sorting and Searching (review), their

correctness and analysis

2 Divide and Conquer: Application to Sorting and Searching (review of binary

search), merge sort, their correctness and analysis.

3 Divide and Conquer: quick sort, its correctness and analysis.

4 Heapsort, its correctness and analysis

5 Lower Bounds using decision trees, sorting in Linear Time - Bucket Sort, Radix

Sort and Count Sort, their analysis

6 Medians & Order Statistics with analysis

7-9 Graph Algorithms: Graph Representation, Breadth First Search, Depth First

Search, Applications

10-11 Greedy Algorithms: Application to various problems, their correctness and

analysis

12-14 Dynamic Programming: Application to various problems, their correctness and

analysis

15 Amortized analysis

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Brute Force Algorithm, divide and conquer, greedy, dynamic programming approaches, inplace

algorithm, best / average / worst case running time of algorithms.

43

Software Engineering (BHCS09) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

The course introduces fundamental Software Engineering approaches and techniques for

software development. The students also develop a case study using appropriate software model.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Analyse and model customer’s requirements and model its software design.

2. Use suitable software model for the problem at hand.

3. Estimate cost and efforts required in building software.

4. Analyse and compute impact of various risks involved in software development.

5. Design and build test cases, and to perform software testing.

Detailed Syllabus

Unit 1

Introduction: Software Engineering - A Layered Approach; Software Process – Process

Framework, Umbrella Activities; Process Models – Waterfall Model, Incremental Model, and

Evolutionary process Model (Prototyping, Spiral Model); Introduction to Agile – Agility

Principles, Agile Model – Scrum.

Unit 2

Software Requirements Analysis and Specifications: Use Case Approach, Software

Requirement Specification Document, Flow oriented Modeling, Data Flow Modeling, Sequence

Diagrams

Unit 3

Design Modeling: Translating the Requirements model into the Design Model, The Design

Process, Design Concepts - Abstraction, Modularity and Functional Independence; Architectural

Mapping using Data Flow.

Unit 4

44

Software Metrics and Project Estimations: Function based Metrics, Software Measurement,

Metrics for Software Quality; Software Project Estimation (FP based estimations, COCOMO II

Model); Project Scheduling (Timeline charts, tracking the schedule).

Unit 5

Quality Control and Risk Management: Quality Control and Quality Assurance, Software

Process Assessment and Improvement Capability Maturity Model Integration (CMMI); Software

Risks, Risk Identification, Risk Projection and Risk Refinement, Risk Mitigation, Monitoring

and Management.

Unit 6

Software Testing: Strategic Approach to Software Testing, Unit Testing, Integration Testing,

Validation Testing, System Testing; Black-Box and White Box Testing, Basis Path Testing.

Practical

Practical problems related to

1. Requirement Analysis, Creating a Data Flow, Data Dictionary, Use Cases

3. Computing FP, Effort, Schedule, Risk Table, Timeline chart

4. Design Engineering, Architectural Design, Data Design, Component Level Design

5. Testing, Basis Path Testing

Sample Projects:

1. Criminal Record Management: Implement a criminal record management system for jailers,

police officers and CBI officers

2. DTC Route Information: Online information about the bus routes and their frequency and

fares

3. Car Pooling: To maintain a web based intranet application that enables the corporate

employees within an organization to avail the facility of carpooling effectively.

4. Patient Appointment and Prescription Management System

5. Organized Retail Shopping Management Software

6. Online Hotel Reservation Service System

7. Examination and Result computation system

8. Automatic Internal Assessment System

9. Parking Allocation System

10. Wholesale Management System

45

References

1. Aggarwal, K. K., & Singh, Y. (2007). Software Engineering. 3rd edition. New Age

International Publishers.

2. Pressman, R. S., & Maxim, B. R. (2015). Software Engineering: A Practitioner’s Approach.

8th edition. McGraw-Hill.

Additional Resources

1. Jalote, P. (2005). An Integrated Approach to Software Engineering. 3rd edition. Narosa

Publishing House.

2. Schwaber, K. & Sutherland, J. (2016). The Definitive Guide to Scrum: The Rules of the Game.

[https://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf]

3. Sommerville. (2011). Software Engineering. 9th edition. Addison Wesley.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Software - Nature of Software, Software Application Domains, Legacy

Software; Software Engineering - A Layered Approach; Software Process –

Process Framework, Framework and Umbrella Activities

2 Process Models – Waterfall Model, Incremental Model, and Evolutionary

process Model (Prototyping, Spiral Model);

3 Introduction to Agile – Agility, Cost of Change, Agility Principles

4 Agile Model - Scrum; Software Process Assessment and Improvement -

Capability Maturity Model Integration (CMMI).

5 Requirements Modeling - Requirements Modeling Approaches, Flow oriented

46

Modeling, Data Flow Modeling,

6 Control Flow Model, Control Specification, Process Specification, Behavioral

Model, State Diagram, Sequence Diagrams;

7 Design Modeling - Design Concepts, Translating requirements model into

design model, Design Process, Abstraction, Architecture, Separation of

concerns, Modularity, Information hiding, Functional Independence,

8 Refinement, Refactoring; Architectural Mapping using Data Flow.

9 Risk Management- Software Risks, Risk Identification, Risk Projection and

Risk Refinement, Risk Mitigation, Monitoring and Management.

10 Function based Product Metrics, Software Quality Metrics;

11 Estimation for Software Project, Project Scheduling, Quality - Software

Quality, McCall’s Quality Factors, ISO 9126 Quality Factors, Achieving

Software Quality;

12 Cost Impact of Software Defects, Defect Amplification and Removal, Formal

Technical Reviews; Software Quality Assurance – SQA Tasks.

13-14 Software Testing - Strategic Approach to Software Testing, Unit Testing,

Integration Testing, Validation Testing, System Testing;

15 Black-Box and White Box Testing, Basis Path Testing

Assessment Methods

Written tests, assignments, quizzes, presentations, projects as announced by the instructor in the

class.

Keywords

Software models, requirement analysis, software design and testing, software risks and costs

47

Database Management Systems (BHCS10) Discipline Specific Core Course -

(DSC) Credit: 06

Course Objective

The course introduces the foundations of database management systems focusing on significance

of a database, relational data model, schema creation and normalization, transaction processing,

indexing, and the relevant data structures (files and B+-trees).

Course Learning Outcomes

On successful completion of the course, students will:

1. Describe major components of DBMS and their functions

2. Model an application’s data requirements using conceptual modelling tools like ER diagrams

and design database schemas based on the conceptual model.

3. Write queries in relational algebra / SQL

4. Normalize a given database schema to avoid data anomalies and data redundancy.

5. Describe the notions of indexes, views, constraints and transactions.

Detailed Syllabus

Unit 1

Introduction to databases: Characteristics of database approach, data models, database system

architecture, data independence and data abstraction.

Unit 2

Data modeling: Entity relationship (ER) modeling: Entity types, relationships, constraints, ER

diagrams, EER model

Unit 3

Relation data model: Relational model concepts, relational constraints, relational algebra.

Unit 4

SQL queries: SQL data definition, data types, specifying constraints, Queries for retrieval,

insertion, deletion, updation, introduction to views.

Unit 5

Database design: Mapping ER/EER model to relational database, functional dependencies,

Lossless decomposition, Normal forms (upto BCNF).

48

Unit 6

Transaction and data storage: Introduction to transaction processing: ACID properties,

concurrency control; Introduction to indexing structures for files.

Practical

Create and use the following database schema to answer the given queries.

EMPLOYEE Schema

Field Type NULL KEY

DEFAULT

Eno Char(3) NO PRI NIL

Ename Varchar(50) NO NIL

Job_type Varchar(50) NO NIL

Manager Char(3) Yes FK NIL

Hire_date Date NO NIL

Dno Integer YES FK NIL

Commission Decimal(10,2) YES NIL

Salary Decimal(7,2) NO NIL

DEPARTMENT Schema

Field Type NULL KEY

DEFAULT

Dno Integer No PRI NULL

Dname Varchar(50) Yes NULL

Location Varchar(50) Yes New Delhi

Query List

1. Query to display Employee Name, Job, Hire Date, Employee Number; for each employee with

the Employee Number appearing first.

49

2. Query to display unique Jobs from the Employee Table.

3. Query to display the Employee Name concatenated by a Job separated by a comma.

4. Query to display all the data from the Employee Table. Separate each Column by a comma

and name the said column as THE_OUTPUT.

5. Query to display the Employee Name and Salary of all the employees earning more than

$2850.

6. Query to display Employee Name and Department Number for the Employee No= 7900.

7. Query to display Employee Name and Salary for all employees whose salary is not in the

range of $1500 and $2850.

8. Query to display Employee Name and Department No. of all the employees in Dept 10 and

Dept 30 in the alphabetical order by name.

9. Query to display Name and Hire Date of every Employee who was hired in 1981.

10. Query to display Name and Job of all employees who don’t have a current Manager.

11. Query to display the Name, Salary and Commission for all the employees who earn

commission.

12. Sort the data in descending order of Salary and Commission.

13. Query to display Name of all the employees where the third letter of their name is ‘A’.

14. Query to display Name of all employees either have two ‘R’s or have two ‘A’s in their name

and are either in Dept No = 30 or their Manger’s Employee No = 7788.

15. Query to display Name, Salary and Commission for all employees whose Commission

amount is 14 greater than their Salary increased by 5%.

16. Query to display the Current Date.

17. Query to display Name, Hire Date and Salary Review Date which is the 1st Monday after six

months of employment.

18. Query to display Name and calculate the number of months between today and the date each

employee was hired.

50

19. Query to display the following for each employee <E-Name> earns < Salary> monthly but

wants < 3 * Current Salary >. Label the Column as Dream Salary.

20. Query to display Name with the 1st letter capitalized and all other letter lower case and

length of their name of all the employees whose name starts with ‘J’, ’A’ and ‘M’.

21. Query to display Name, Hire Date and Day of the week on which the employee started.

22. Query to display Name, Department Name and Department No for all the employees.

23. Query to display Unique Listing of all Jobs that are in Department # 30.

24. Query to display Name, Dept Name of all employees who have an ‘A’ in their name.

25. Query to display Name, Job, Department No. And Department Name for all the employees

working at the Dallas location.

26. Query to display Name and Employee no. Along with their Manger’s Name and the

Manager’s employee no; along with the Employees’ Name who do not have a Manager.

27. Query to display Name, Dept No. And Salary of any employee whose department No. and

salary matches both the department no. And the salary of any employee who earns a

commission.

28. Query to display Name and Salaries represented by asterisks, where each asterisk (*)

signifies $100.

29. Query to display the Highest, Lowest, Sum and Average Salaries of all the employees

30. Query to display the number of employees performing the same Job type functions.

31. Query to display the no. of managers without listing their names.

32. Query to display the Department Name, Location Name, No. of Employees and the average

salary for all employees in that department.

33. Query to display Name and Hire Date for all employees in the same dept. as Blake.

34. Query to display the Employee No. And Name for all employees who earn more than the

average salary.

35. Query to display Employee Number and Name for all employees who work in a department

with any employee whose name contains a ‘T’.

51

36. Query to display the names and salaries of all employees who report to King.

37. Query to display the department no, name and job for all employees in the Sales department

References

1. Elmasri, R., & Navathe, S.B. (2015). Fundamentals of Database Systems. 7th edition. Pearson

Education.

Additional Resources

1. Date, C. J. (2004). An Introduction to database systems. 8th edition. Pearson Education.

2. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). Database System Concepts. 6th

edition. McGrawHill.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Introduction to databases: Characteristics of database approach, data models,

database system architecture, data independence and data abstraction.

2-3 Entity relationship(ER) modeling: Entity types, relationships, constraints;ER

examples

4-5 Relation data model: Relational model concepts, relational constraints,

relational algebra; examples

6-8 SQL queries; examples

9 Database design: Mapping ER/EER model to relational database; examples

10-12 Database design: functional dependencies, Lossless decomposition, Normal

forms (upto BCNF); examples

13 Transaction and data storage: Transaction processing:ACID properties,

concurrency control; File structure and indexing: Operations on files, File of

Unordered and ordered records

52

14 File structure and indexing: overview of File organizations, Indexing

structures for files, examples

15 XML databases, noSQLsystems

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Entity-Relationship Modeling, Database Design, Transaction Processing, noSQL systems.

Internet Technologies (BHCS11) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

This course introduces the protocols used in Internet, its architecture, and security aspect of

Internet. Student will have an insight that how a search engine works and web crawls.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe Internet, its architecture, services and protocol.

2. Implement a simple search engine.

3. Implement a web crawler.

4. Use javascript technologies to make a website highly responsive, more efficient and user

friendly

Detailed Syllabus

Unit 1

Introduction: Network address translation, Subnet Masking, Difference between Intranet and

Internet, Working of Internet, Dynamic and Static Routing, Domain Name Server , networking

tools - ipconfig, ping, netstat, traceroute

53

Unit 2

Introduction to Internet Protocols: HTTP, HTTPS, FTP, SMTP, IMAP, POP3, VoIP

Unit 3

Web Servers: Introduction, Working, Configuring, Hosting and Managing a Web server,

Proxy Servers: Introduction, Working, Type of Proxies, setting up and managing a proxy server

Client-side Technologies, Server-side Technologies and hybrid technologies

Unit 4

Javascript, jQuery, JSON, NODE.js, BOOTSTRAP, Introduction to forums, blogging, portfolio,

developing a responsive website, Combining Web Applications and Mobile Applications

Unit 5

Search Engines - components, working, optimization, Crawling, BOTS

Unit 6

Introduction to cookies and sessions, Introduction to e-commerce websites and e-carts.

Practical

Pre-requisites for course: Programming, Computer Networks, Web-Designing (HTML, CSS,

Basic JavaScript)

1. Demonstrate the use of networking tools like ping, ipconfig, netstat and traceroute.

2. Configure a web-server on a personal system.

3. Demonstrate the network monitoring of the internet traffic through any predefined tool

4. Develop an interactive website using jquery, JSON, NODE.js and BOOTSTRAP with

following functionalities.

1. Design a home page and other allied pages of the website using HTML and CSS

2. Create a registration form and insert the data into tables at the backend. Creating an html

form with content validation using JavaScript.

3. Handle HTML form using jQuery, store the data in JSON objects, pass them to another

page and display it there using jQuery

4. Logging system to manage various types of accounts

5. Create pages with dynamic content fetching and display

6. Perform event handling in node.js

References

54

1. Bayross, I. (2013). Web enabled commercial application development using HTML,

JavaScript, DHTML and PHP. 4th edition. BPB Publication.

2. DComer. (2018). The Internet Book: Everything You need to know about Computer

networking and how the internet works. 5th edition. CRC Press.

3. Duckett, J.(2014). JavaScript and JQuery: Interactive Front-End Web Development. Wiley

Additional Resources

1. Godbole, A. S.& Kahate A (2008). Web Technologies. Tata McGrawHill

2. Greenlaw R. & Hepp E, (2007). Fundamentals of Internet and WWW. 2nd edition. Tata

McGrawHill.

3. Jackson. (2008). Web Technologies. Pearson Education

4. Patel, B & Barik, L.B , Internet & Web Technology , Acme Learning Publisher.

5. Reddy, S., Aggarwal, A., Sayer, M., Totty, B., & Gourley, D. (2002). HTTP: The Definitive

Guide. Media: O’Reilly Media Inc.

6. Young, M. L. (2007). The Complete reference to Internet. Tata: McGraw Hill.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-2

 Network address translation, Subnet Masking, Difference between

Intranet and Internet, Working of Internet, Dynamic and Static

Routing, Domain Name Server, networking tools - ipconfig, ping,

netstat, traceroute

3
 Introduction to Internet Protocols - HTTP, HTTPS, FTP, SMTP, IMAP,

POP3, VoIP

4-7

 Web Servers: Working, Configuring, Hosting and Managing a Web

server

Proxy Servers: Working, Type of Proxies, setting up and managing a

55

proxy server, Client-side Technologies, Server-side Technologies and

hybrid technologies

8-10 Javascript, JSON jQuery

11-12 NODE.js, BOOTSTRAP

13-14
 Introduction to forums, blogging, portfolio, Developing a responsive

website, combining Web Applications and Mobile Applications

15
 Search Engines - components, working, optimization, Crawling, BOTS

 Introduction to cookies and sessions, e-commerce websites and e-carts

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Internet, networks, JSON, AJAX, JQUERY, web application

Theory of Computation (BHCS12) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

This course introduces formal models of computation, namely, finite automaton, pushdown

automaton, and Turing machine; and their relationships with formal languages. Students will also

learn about the limitations of computing machines.

Course Learning Outcomes

On successful completion of the course, a student will be able to:

1. Design a finite automaton, pushdown automaton or a Turing machine for a problem at hand.

2. Apply pumping lemma to prove that a language is non-regular/non-context-free.

3. Describe limitations of a computing machine.

Detailed Syllabus

56

Unit 1

Languages: Alphabets, string, language, basic operations on language, concatenation, union,

Kleene star.

Unit 2

Regular Expressions and Finite Automata: Regular expressions, Deterministic finite automata

(DFA).

Unit 3

Regular Languages: Non-deterministic Finite Automata (NFA), relationship between NFA and

DFA, Transition Graphs (TG), properties of regular languages, the relationship between regular

languages and finite automata, Kleene's Theorem.

Unit 4

Non-Regular Languages and Context Free Grammars: Pumping lemma for regular

grammars, Context-Free Grammars (CFG),

Unit 5

Context-Free Languages (CFL) and PDA: Deterministic and non-deterministic Pushdown

Automata (PDA), parse trees, leftmost derivation, pumping lemma for CFL, properties of CFL.

Unit 6

Turing Machines and Models of Computations: Turing machine as a model of computation,

configuration of simple Turing machine, Church Turing Thesis, Universal Turing Machine,

decidability, halting problem.

Practical

Tutorials based on theory.

References

1. Cohen, D. I. A. (2011). Introduction to Computer Theory. 2nd edition. Wiley India.

2. Lewis, H.R. & Papadimitriou, H. R. (2002). Elements of the Theory of Computation. 6th

edition. Prentice Hall of India (PHI)

Additional Resources

1. Goodrich, M., Tamassia, R., & Mount, D.M. (2011). Data Structures and Algorithms Analysis

in C++. 2nd edition. Wiley.

2. Gopalkrishnan, G.L. (2019) Automata and Computability: A programmer's perspective. CRC

Press.

57

3. Linz, P. (2016). An Introduction to Formal Languages and Automata.6
th

edition. Jones and

Bartlett Learning.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Topics to be covered

1 Languages: Alphabets, string, language, Basic operations on a Language,

concatenation, Kleene Star, Kleene closure.

2 Regular Expression: Definition and use of regular expressions, languages

defined by regular expressions, understanding a regular expression, building

regular expressions

3 Introduction to finite automata and its relationship with regular expressions,

Finite Automata and their languages, deterministic finite automata (DFA).

4 Transition Graphs Relaxing Restrictions on Inputs in TG (Transition Graph),

TG vs. FA, Generalized Transition Graphs (GTG), Introduction to Non-

determinism.

5 Kleene's Theorm: Turning TGs and FA to regular expressions and vice

versa, Depicting union of two Regular Languages (RL) using an FA,

Depicting concatenation (Product) of two RL using an FA.

6 Keene Star of a RL (Regular Language) using an FA, Non-deterministic

finite automata (NFA), relationship between NFA and DFA, converting NFA

to DFA.

7 Regular Languages: Complement and intersection of a regular languages,

relationship between regular languages and finite automata.

8 Pumping lemma for regular languages.

Introduction to context-free languages.

9 Context Free Grammar: Context free grammars, Parse trees.

Introduction to Pushdown Automata (PDA).

Pushdown Automata: A new Format for FAs, Introduction to Pushdown

Automata (PDA).

10 Pushdown Automata: Adding a pushdown stack, design and analysis of

Deterministic PDA, design and analysis of non-deterministic pushdown

automata.

11 Non-Context-Free Languages: Pumping Lemma for Context-Free-

Languages (CFLs), properties of context free languages.

58

12 Simple Turing machine as a model of computation and its configuration,

computing with Turing machine and its working.

13 Building simple Turing machines, combining Turing machines, Church

Turing Thesis.

14-15 Universal Turing machine, semi-decidability and decidability, recursively-

enumerable and recursive languages, halting problem.

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Regular expressions and languages, finite automata, context free grammar and languages,

pushdown automata, Turing machine.

Artificial Intelligence (BHCS13) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

This course introduces the basic concepts and techniques of Artificial Intelligence (AI). The

course aims to introduce intelligent agents and reasoning, heuristic search techniques, game

playing, knowledge representation, reasoning with uncertain knowledge.

Course Learning Outcomes

On successful completion of this course, students will be able to:

1. Identify problems that are amenable to solution by specific AI methods

2. Represent knowledge in Prolog and write code for drawing inferences.

3. Identify appropriate AI technique for the problem at hand

4. Compare strengths and weaknesses of different artificial Intelligence techniques.

5. Sensitive towards development of responsible Artificial Intelligence

Detailed Syllabus

59

Unit 1

Introduction: Introduction to artificial intelligence, background and applications, Turing test,

rational agents, intelligent agents, structure, behaviour and environment of intelligent agents.

Unit 2

Knowledge Representation: Propositional logic, first order predicate logic, resolution principle,

unification, semantic nets, conceptual dependencies, frames, scripts, production rules, conceptual

graphs.

Unit 3

Reasoning with Uncertain Knowledge: Uncertainty, non-monotonic reasoning, truth

maintenance systems, default reasoning and closed world assumption, Introduction to

probabilistic reasoning, Bayesian probabilistic inference, introduction to fuzzy sets and fuzzy

logic, reasoning using fuzzy logic.

Unit 4

Problem Solving and Searching Techniques: Problem characteristics, production systems,

control strategies, breadth first search, depth first search, hill climbing and its variations,

heuristics search techniques: best first search, A* algorithm, constraint satisfaction problem,

means-end analysis.

Unit 5

Game Playing: introduction to game playing, min-max and alpha-beta pruning algorithms.

Prolog Programming: Introduction to Programming in Logic (PROLOG), Lists, Operators,

basic Input and Output.

Unit 6

Understanding Natural Languages: Overview of linguistics, Chomsky hierarchy of grammars,

parsing techniques.

Unit 7

Ethics in AI, Fairness in AI, Legal perspective

Practical

1. Write a prolog program to calculate the sum of two numbers.

2. Write a Prolog program to implement max(X, Y, M) so that M is the maximum of two

numbers X and Y.

3. Write a program in PROLOG to implement factorial (N, F) where F represents the

factorial of a number N.

60

4. Write a program in PROLOG to implement generate_fib(N,T) where T represents the Nth

term of the fibonacci series.

5. Write a Prolog program to implement GCD of two numbers.

6. Write a Prolog program to implement power (Num,Pow, Ans) : where Num is raised to

the power Pow to get Ans.

7. Prolog program to implement multi (N1, N2, R) : where N1 and N2 denotes the numbers

to be multiplied and R represents the result.

8. Write a Prolog program to implement memb(X, L): to check whether X is a member of L

or not.

9. Write a Prolog program to implement conc (L1, L2, L3) where L2 is the list to be

appended with L1 to get the resulted list L3.

10. Write a Prolog program to implement reverse (L, R) where List L is original and List R is

reversed list.

11. Write a program in PROLOG to implement palindrome (L) which checks whether a list L

is a palindrome or not.

12. Write a Prolog program to implement sumlist(L, S) so that S is the sum of a given list L.

13. Write a Prolog program to implement two predicates evenlength(List) and

oddlength(List) so that they are true if their argument is a list of even or odd length

respectively.

14. Write a Prolog program to implement nth_element (N, L, X) where N is the desired

position, L is a list and X represents the Nth element of L.

15. Write a Prolog program to implement maxlist(L, M) so that M is the maximum number in

the list.

16. Write a prolog program to implement insert_nth (I, N, L, R) that inserts an item I into Nth

position of list L to generate a list R.

17. Write a Prolog program to implement delete_nth (N, L, R) that removes the element on

Nth position from a list L to generate a list R.

18. Write a program in PROLOG to implement merge (L1, L2, L3) where L1 is first ordered

list and L2 is second ordered list and L3 represents the merged list.

References

1. Rich, E. & Knight,K. (2012). Artificial Intelligence. 3rd edition. Tata McGraw Hill.

2. Russell, S.J. & Norvig, P. (2015) Artificial Intelligence - A Modern Approach. 3rd edition.

Pearson Education

61

Additional Resources:

1. Bratko, I. (2011). Prolog Programming for Artificial Intelligence. 4th edition. Pearson

Education

2. Clocksin, W.F. & Mellish (2003), Programming in PROLOG. 5th edition. Springer

3. Kaushik, S. (2011). Artificial Intelligence. Cengage Learning India.

4. Patterson, D.W. (2015). Introduction to Artificial Intelligence and Expert Systems. 1st edition.

Pearson Education.

Web Resources

1. https://cyber.harvard.edu/topics/ethics-and-governance-ai

2. https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0085

3. https://arxiv.org/abs/1812.02953

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1

Introduction to artificial intelligence, background and applications,

Turing test and rational agent approaches to AI, introduction to

intelligent agents.

2
Structure, behavior and environment of intelligent agents, problem

characteristics, production systems, control strategies.

3 Introduction to programming in logic (PROLOG).

4
Programming in logic (PROLOG), breadth first search, depth first

search introduction of heuristic search techniques.

5 Propositional logic, first order predicate logic.

6 Unification, clausal form, resolution principle.

7 Semantic nets, conceptual graphs, conceptual dependencies.

8

Frames, scripts, Uncertainty: non-monotonic reasoning, truth

maintenance systems, default reasoning and closed world

assumption.

https://cyber.harvard.edu/topics/ethics-and-governance-ai
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0085
https://arxiv.org/abs/1812.02953

62

9
Bayesian probabilistic inference, Bayesian networks, Dempster-

Shafer theory, Introduction to fuzzy sets and fuzzy logic.

10
Basic reasoning using fuzzy concepts, production rules, Chomsky

hierarchy of grammars, context-free grammars.

11 Hill climbing and its variations, best first search.

12 A* algorithm, constraint satisfaction problem, means-end analysis.

13
Introduction to game playing, min-max procedure, alpha-beta

pruning.

14-15
Overview of linguistics, Chomsky hierarchy of grammars, parsing

techniques..

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Artificial Intelligence, Problem Solving, Knowledge Representation, Reasoning, Uncertainty,

Natural Language Processing

Computer Graphics (BHCS14) Discipline Specific Core Course - (DSC)

Credit: 06

Course Objective

This course introduces fundamental concepts of Computer Graphics with focus on modelling,

rendering and interaction aspects of computer graphics. The course emphasizes the basic

principles needed to design, use and understand computer graphics system.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe Standard raster and vector scan devices as well as Graphical Input and output devices

2. Implement algorithms for drawing basic primitives such as linecircle and ellipse.

3. Implement algorithms for line clipping and polygon clipping and filling.

63

4. Implement a 3D object representation scheme and carryout 2D and 3D Transformation, 3D

projections

5. Implement visible surface determination algorithms, Illumination models and surface

rendering methods, color models

6. Implement a simple computer animation algorithm

Detailed Syllabus

Unit 1

Introduction: Introduction to Graphics systems, Basic elements of Computer graphics,

Applications of computer graphics. Architecture of Raster and Random scan display devices,

input/output devices.

Unit 2

Drawing and clipping primitives: Raster scan line, circle and ellipse drawing algorithms,

Polygon filling, line clipping and polygon clipping algorithms

Unit 3

Transformation and Viewing: 2D and 3D Geometric Transformations, 2D and 3D Viewing

Transformations (Projections- Parallel and Perspective), Vanishing points.

Unit 4

Geometric Modeling: Polygon Mesh Representation, Cubic Polynomial curves (Hermite and

Bezier).

Unit 5

Visible Surface determination and Surface Rendering: Z-buffer algorithm, List-priority

algorithm and area subdivision algorithm for visible surface determination. Illumination and

shading models, RGB color model and Basics of Computer Animation.

Practical

1. Write a program to implement Bresenham’s line drawing algorithm.

2. Write a program to implement mid-point circle drawing algorithm.

3. Write a program to clip a line using Cohen and Sutherland line clipping algorithm.

4. Write a program to clip a polygon using Sutherland Hodgeman algorithm.

5. Write a program to fill a polygon using Scan line fill algorithm.

6. Write a program to apply various 2D transformations on a 2D object (use homogenous

64

Coordinates).

7. Write a program to apply various 3D transformations on a 3D object and then apply parallel

and perspective projection on it.

8. Write a program to draw Hermite /Bezier curve.

References

1. Baker, D.H. (2008). Computer Graphics. 2nd edition. Prentice Hall of India.

2. Foley, J. D., Dam, A.V, Feiner, S. K., & Hughes, J. F. (1995). Computer Graphics: Principles

and Practice in C. 2nd edition. Addison-Wesley Professional.

Additional Resources:

1. Bhattacharya, S. (2018). Computer Graphics. Oxford University Press

2. Cohen, D. I. A. (2011). Introduction to Computer Theory. 2nd edition. Wiley India.

3. Marschner, S., & Shirley, P. (2017) Fundamentals of Computer Graphics. 4th edition. CRC

Press

4. Rogers, D. F. (1989). Mathematical Elements for Computer Graphics. 2nd edition. McGraw

Hill.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

65

Week Contents

1 Introduction to Graphics systems, Basic elements of Computer graphics, Applications

of computer graphics.

2 Graphics Hardware: Architecture of Raster and Random scan display devices,

input/output devices.

3-4 Drawing Primitives: Raster scan line drawing algorithm, circle and ellipse drawing

algorithms

5 Polygon filling, line clipping and polygon clipping algorithms

6 Transformation: 2D and 3D Geometric Transformations

7-9 Viewing : 3D Viewing Transformations, Parallel Projections, Perspective

Projections ,Vanishing points

10 Geometric Modeling: Representing curves(Hermite and Bezier)

11-12 Geometric Modeling: Representing curves(Hermite and Bezier)(cont.), Visible

Surface determination: Z-buffer algorithm

13 List-priority algorithm and area subdivision algorithm.

14 Surface rendering: Illumination and shading models

15 RGB color model and Computer Animation.

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Computer Graphics, Modelling, Rendering, Transformation and viewing

Data Analysis and Visualization (BHCS15A) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

66

This course introduces students to data analysis and visualization in the field of exploratory data

science using Python.

Course Learning Outcomes

On successful completion of the course, the students will be able to :

1. Use data analysis tools in the pandas library.

2. Load, clean, transform, merge and reshape data.

3. Create informative visualization and summarize data sets.

4. Analyze and manipulate time series data.

5. Solve real world data analysis problems.

Detailed Syllabus

Unit 1

Introduction: Introduction to Data Science, Exploratory Data Analysis and Data Science

Process. Motivation for using Python for Data Analysis, Introduction of Python shell iPython

and Jupyter Notebook.

Essential Python Libraries: NumPy, pandas, matplotlib, SciPy, scikit-learn, statsmodels

Unit 2

Getting Started with Pandas: Arrays and vectorized conputation, Introduction to pandas Data

Structures, Essential Functionality, Summarizing and Computing Descriptive Statistics.

Data Loading, Storage and File Formats.

Reading and Writing Data in Text Format, Web Scraping, Binary Data Formats, Interacting with

Web APIs, Interacting with Databases

Data Cleaning and Preparation.

Handling Missing Data, Data Transformation, String Manipulation

Unit 3

Data Wrangling: Hierarchical Indexing, Combining and Merging Data Sets Reshaping and

Pivoting.

Data Visualization matplotlib: Basics of matplotlib, plotting with pandas and seaborn, other

python visualization tools

Unit 4

Data Aggregation and Group operations: Group by Mechanics, Data aggregation, General

split-apply-combine, Pivot tables and cross tabulation

67

Time Series Data Analysis: Date and Time Data Types and Tools, Time series Basics, date

Ranges, Frequencies and Shifting, Time Zone Handling, Periods and Periods Arithmetic,

Resampling and Frequency conversion, Moving Window Functions.

Unit 5

Advanced Pandas: Categorical Data, Advanced GroupBy Use, Techniques for Method

Chaining

Practical

Use data set of your choice from Open Data Portal (https://data.gov.in/) for the following

exercises.

1. Practicals based on NumPy ndarray

2. Practicals based on Pandas Data Structures

3. Practicals based on Data Loading, Storage and File Formats

4. Practicals based on Interacting with Web APIs

5. Practicals based on Data Cleaning and Preparation

6. Practicals based on Data Wrangling

7. Practicals based on Data Visualization using matplotlib

8. Practicals based on Data Aggregation

9. Practicals based on Time Series Data Analysis

References

1. McKinney, W.(2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy and

IPython. 2nd edition. O’Reilly Media.

2. O’Neil, C., & Schutt, R. (2013). Doing Data Science: Straight Talk from the Frontline

O’Reilly Media.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Introduction: What is Data Science? Exploratory Data Analysis and Data Science

Process. Why Python for Data Analysis? Introduction of Python shell iPython and

https://data.gov.in/

68

Jupyter Notebook.

2-3 Essential Python Libraries: Learn NumPy, pandas, matplotlib, SciPy, scikit-learn,

statsmodels.

4 Built-in Data Structures, Function and Files: Data Structure and sequences,

Functions, Files and Operating systems

5 Arrays and Vectorized computation: The NumPy ndarray, Universal Functions,

Array Oriented Programming with Arrays, File Input and Output with Arrays,

Linear Algebra, Pseudorandom Number Generation

6 Getting Started with pandas: Introduction to pandas Data Structures, Essential

Functionality, Summarizing and Computing Descriptive Statistics.

7 Data Loading, Storage and File Formats: Reading and Writing Data in Text Format,

Web Scraping, Binary Data Formats, Interacting with Web APIs, Interacting with

Databases.

8 Data Cleaning and Preparation: Handling Missing Data, Data Transformation,

String Manipulation

9 Data Wrangling: Hierarchical Indexing, Combining and Merging Data Sets

Reshaping and Pivoting.

10 Data Visualization matplotlib: Basics of matplotlib, plotting with pandas and

seaborn, other python visualization tools.

11 Data Aggregation and Group operations: Group by Mechanics, Data aggregation,

General split-apply-combine, Pivot tables and cross tabulation

12-13 Time Series Data Analysis: Date and Time Data Types and Tools, Time series

Basics, date Ranges, Frequencies and Shifting, Time Zone Handling, Periods and

Periods Arithmetic, Resampling and Frequency conversion, Moving Window

Functions

14-15 Data Analysis Case Studies

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Data Analysis, data wrangling, data visualization, data cleaning, data preparation

69

System Programming (BHCS15B) Discipline Specific Elective - (DSE)

 Credit: 06

Course Objective

The course is focused on design of assembler and basic compiler. The course covers topics like

absolute loader, relocating loader and dynamic linking.

Course Learning Outcomes

On successful completion of the course, the students will be able to:

1. Describe the working of assemblers and compilers.

2. Use Lex/ Yacc for building basic compiler.

3. Develop a two pass Assemblers.

4. Describe the role of the loaders, linkers and relocatable programs.

Detailed Syllabus

Unit 1

Assemblers & Loaders, Linkers: One pass and two pass assembler, design of an assembler,

Absolute loader, relocation and linking concepts, relocating loader and Dynamic Linking.

Unit 2

Introduction: Overview of compilation, Phases of a compiler.

Unit 3

Lexical Analysis: Role of a Lexical analyzer, Specification and recognition of tokens, Symbol

table, lexical Analyzer Generator.

Unit 4

Parsing & Intermediate representations: Bottom up parsing- LR parser, yacc,three address

code generation, syntax directed translation, translation of types, control statements

Unit 5

Storage organization & Code generation: Activation records, stack allocation, Object code

generation

70

Practical

Projects to implement an assembler for a hypothetical language.

Programs to get familiar with Lex and Yacc

1. Write a Lex program to count the number of lines and characters in the input file.

2. Write a Lex program that implements the Caesar cipher: it replaces every letter with the one

three letters after in in alphabetical order, wrapping around at Z. e.g. a is replaced by d, b by e,

and so on z by c.

3. Write a Lex program that finds the longest word (defined as a contiguous string of upper and

lower case letters) in the input.

4. Write a Lex program that distinguishes keywords, integers, floats, identifiers, operators, and

comments in any simple programming language.

5. Write a Lex program to count the number of identifiers in a C file.

6. Write a Lex program to count the number of words, characters, blank spaces and lines in a C

file.

7. Write a Lex specification program that generates a C program which takes a string “abcd” and

prints the following output

abcd

abc

a

8. A program in Lex to recognize a valid arithmetic expression.

9. Write a YACC program to find the validity of a given expression (for operators + - * and /)A

program in YACC which recognizes a valid variable which starts with letter followed by a digit.

The letter should be in lowercase only.

10. A Program in YACC to evaluate an expression (simple calculator program for addition and

subtraction, multiplication, division).

11. Program in YACC to recognize the string „abbb‟, „ab‟ „a‟ of the langauge (an b n , n>=1).

12. Program in YACC to recognize the language (an b , n>=10). (output to say input is valid or

not)

References

1. Aho, A., Lam, M., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques, and

Tools. 2nd edition. Addison Wesley.

2. Chattopadhyaya, S. (2011). System Software. P H I Learning.

 Additional references:

71

1. Beck, L. & Manjula, D. (1996). System Software: An Introduction to System Programming.

3rd edition. Pearson Education.

2. Dhamdhere, D. M. (2015). Systems Programming. Tata McGrawHill.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-3

Assemblers & Loaders, Linkers:

One pass and two pass assembler, design of an assembler,

Absolute loader, relocation and linking concepts, relocating

loader and Dynamic Linking.

4
Overview of compilation, Phases of a

compiler.

5-6

Lexical Analysis: Role of a Lexical analyzer, Specification

and recognition of tokens,Symbol table, lexical Analyzer

Generator.

7-9 Parsing : Bottom up parsing- LR parser,yacc.

10-11

Intermediate representations: Three address code

generation,syntax directed translation, translation of types,

control statements

12-15

Storage organization & Code generation: Activation

records, stack allocation, Object code

generation

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Compilers, lexical analyzer, syntax directed translation, assembler, loader, linker.

72

Combinatorial Optimization (BHCS15C) Discipline Specific Elective - (DSE)

Credit: 06

 Course Objectives

This course is designed to introduce the fundamentals of combinatorial optimization to the

students in terms of both theory and applications, so as to equip them to explore the more

advanced areas of convex and non-convex optimizations.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Model problems using linear and integer programs

2. Apply polyhedral analysis to develop algorithms for optimization problems

3. Use the concept of duality for design of algorithms

Detailed Syllabus

Unit 1

Introduction to Combinatorial Optimization Problems, Linear and Integer Programs: LP

Formulation, understanding integer programs, computational complexities of IP vs LP, using LP

to find optimal or approximate integral solutions, concept of integrality gap.

Unit 2

Theory of Linear Programming and Algorithmic Perspective to Simplex Method: standard

vs. equational form, basic feasible solutions, convexity and convex polyhedra, correspondence

between vertices and basic feasible solutions, geometry of Simplex algorithm, exception

handling (unboundedness, degeneracy, infeasibility), Simplex algorithm, avoiding cycles.

Unit 3

Primal-Dual Algorithms: interpretation of dual, optimality conditions for primal and dual,

weak and strong duality, complementary slackness, primal-dual algorithm for the shortest path

problem.

Unit 4

Network Flows: linear programming formulations for network flows and bipartite matching,

totally unimodular matrices integral polyhedral.

73

Tutorials

Tutorials based on Theory

References

1. Matousek & Gartner (2007). Understanding and Using Linear Programming. Springer.

2. Papadimitriou, C.H. & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and

complexity. Dover Publications.

Additional Resources:

1. Bazaraa, M.S., Jarvis, J.J., & and Sherali, H.D.(2008). Linear Programming and Network

Flows. 2nd edition. Wiley.

2. Korte, B., & Vygen, J. (2006). Combinatorial Optimization. 5th edition. Springer.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-2

 Introduction to Combinatorial Optimization Problems, Linear and

Integer Programs: LP Formulation, understanding integer programs,

computational complexities of IP vs LP, using LP to find optimal or

approximate integral solutions, concept of integrality gap

3-6

 Theory of Linear Programming and Algorithmic Perspective to

Simplex Method: standard vs. equational form, basic feasible

solutions, convexity and convex polyhedra, correspondence between

vertices and basic feasible solutions, geometry of Simplex

algorithm, exception handling (unboundedness, degeneracy,

infeasibility), Simplex algorithm, avoiding cyc

7-10
 Primal-Dual Algorithms: interpretation of dual, optimality conditions

for primal and dual, weak and strong duality, complementary

74

slackness, primal-dual algorithm for the shortest path problem.

11-15

 Network Flows: linear programming formulations for network flows

and bipartite matching, totally uni-modular matrices integral

polyhedral

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

optimization problems, linear programming, integer programming, duality, network flow

problems

Digital Image Processing (BHCS16A) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

This course introduces students to the fundamentals of digital image processing, and various

image transforms, image restoration techniques, image compression and segmentation used in

digital image processing.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe the roles of image processing systems in a variety of applications;

2. Write programs to read/write and manipulate images: enhancement, segmentation, and

compression, spatial filtering.

3. Develop Fourier transform for image processing in frequency domain.

4. Evaluate the methodologies for image segmentation, restoration

Detailed Syllabus

Unit 1

75

Introduction: Digital Image Fundamentals: Brightness, Adaptation and Discrimination, Light

and Electromagnetic Spectrum, Image Sampling and Quantization, Some Basic Relationships

between Pixels Types of images.

Unit 2

Spatial Domain Filtering: Some Basic Intensity Transformation Functions, Histogram

Equalization, Spatial Correlation and Convolution, Smoothening Spatial Filters: Low pass filters,

Order Statistics filters; Sharpening Spatial Filters: Laplacian filter

Unit 3

Filtering in Frequency Domain: The Discrete Fourier Transformation (DFT), Frequency

Domain Filtering: Ideal and Butterworth Low pass and High pass filters, DCT Transform (1D,

2D).

Unit 4

Image Restoration: Image Degradation/Restoration Process, Noise models, Noise Restoration

Filters

Image Compression: Fundamentals of Image Compression, Huffman Coding, Run Length

Coding, JPEG.

Unit 5

Morphological Image Processing: Erosion, Dilation, Opening, Closing, Hit-or-Miss

Transformation, Basic Morphological Algorithms.

Unit 6

Image Segmentation: Point, Line and Edge Detection, Thresholding, Region Based

Segmentation.

Practical

1. Write program to read and display digital image using MATLAB or SCILAB

a. Become familiar with SCILAB/MATLAB Basic commands

b. Read and display image in SCILAB/MATLAB

c. Resize given image

d. Convert given color image into gray-scale image

e. Convert given color/gray-scale image into black & white image

f. Draw image profile

g. Separate color image in three R G & B planes

h. Create color image using R, G and B three separate planes

76

i. Flow control and LOOP in SCILAB

j. Write given 2-D data in image file

2. To write and execute image processing programs using point processing method

a. Obtain Negative image

b. Obtain Flip image

c. Thresholding

d. Contrast stretching

3. To write and execute programs for image arithmetic operations

a. Addition of two images

b. Subtract one image from other image

c. Calculate mean value of image

d. Different Brightness by changing mean value

4. To write and execute programs for image logical operations

a. AND operation between two images

b. OR operation between two images

c. Calculate intersection of two images

d. Water Marking using EX-OR operation

e. NOT operation (Negative image)

5. To write a program for histogram calculation and equalization using

a. Standard MATLAB function

b. Program without using standard MATLAB functions

c. C Program

6. To write and execute program for geometric transformation of image

a. Translation

b. Scaling

c. Rotation

d. Shrinking

e. Zooming

7. To understand various image noise models and to write programs for

a. image restoration

b. Remove Salt and Pepper Noise

c. Minimize Gaussian noise

d. Median filter and Weiner filter

77

8. Write and execute programs to remove noise using spatial filters

a. Understand 1-D and 2-D convolution process

b. Use 3x3 Mask for low pass filter and high pass filter

9. Write and execute programs for image frequency domain filtering

a. Apply FFT on given image

b. Perform low pass and high pass filtering in frequency domain

c. Apply IFFT to reconstruct image

10. Write a program in C and MATLAB/SCILAB for edge detection using different edge

detection mask

11. Write and execute program for image morphological operations erosion and dilation.

12. To write and execute program for wavelet transform on given image and perform inverse

wavelet transform to reconstruct image.

References

1. Gonzalez, R. C., & Woods, R. E. (2017). Digital Image Processing. 4th edition. Pearson

Education.

2. Jain, A. K. (1988). Fundamentals of Digital Image Processing. 1st edition Prentice Hall of

India.

Additional Resources

1. Castleman, K. R. (1995.). Digital Image Processing. 1st edition. Pearson Education

2. Gonzalez, R. C., Woods, R. E., & Eddins, S. (2004). Digital Image Processing using

MATLAB. Pearson Education Inc.

3. Schalkoff, D. (1989). Image Processing and Computer Vision. 1st edition. John Wiley and

Sons.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

78

Week Content

1 Brightness, Adaptation and Discrimination, Light and Electromagnetic Spectrum,

Image Sampling and Quantization.

2-5 Some Basic Relationships Between Pixels ,Spatial Domain Filtering, Intensity

Transformation Functions, Histogram Equalization, Spatial Correlation and

Convolution , Low pass filters, Order Statistics filters, Sharpening Spatial Filters:

Laplacian filterFiltering in Frequency Domain

The Discrete Fourier Transformation(DFT)

6-7 Frequency Domain Filtering:Ideal and Butterworth Low pass and High pass filters,

Image Degradation/Restoration Process

8-10 Noise models, Noise Restoration Filters, Image Compression, Huffman

Coding,Run Length Coding, Bit Plane Coding

11-12 Morphological Image Processing, Erosion, Dilation, Opening, Closing , Hit-or-Miss

Transformation, Basic Morphological Algorithms

13-15 Image Segmentation: Point, Line and Edge Detection ,Thresholding, Region Based

Segmentation

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

image transform, image restoration, image processing, image segmentation.

Microprocessors (BHCS16B) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

This course introduces internal architecture, programming model of Intel Microprocessors (8086

-Pentium) and assembly language programming using an assembler. Students will also learn

interfacing of memory and I/O devices with microprocessor.

79

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe the internal architecture of Intel microprocessors

2. Define and implement interfaces between the microprocessor and the devices.

3. Write assembly language programs

Detailed Syllabus

Unit 1

Microprocessor architecture: Internal architecture, Programming Model, Addressing modes,

Data movement instructions

Unit 2

Microprocessor programming: Register Organization, instruction formats, Program control

instructions, assembly language

Unit 3

Interfacing: Bus timings, Memory address decoding, cache memory and cache controllers, I/O

interface, keyboard, timer, Interrupt controller, DMA controller, video controllers,

communication interfaces.

Unit 4

Data transfer schemes: Synchronous data transfer, asynchronous data transfer, interrupt driven

data transfer, DMA mode data transfer.

 Unit 5

 Microprocessor controllers: I/O controllers, interrupt controller, DMA controller, USART

controller.

Unit 6

Advance microprocessor architecture: CISC architecture, RISC architecture, superscalar

architecture, multicore architecture

Practical

ASSEMBLY LANGUAGE PROGRAMMING

1. Write a program for 32-bit binary division and multiplication

2. Write a program for 32-bit BCD addition and subtraction

3. Write a program for Linear search and binary search.

80

4. Write a program to add and subtract two arrays

5. Write a program for binary to ascii conversion

6. Write a program for ascii to binary conversion

References

1. Brey, B.B.(2009). The Intel Microprocessors: Architecture, Programming and Interfacing. 8th

edition. Pearson Education.

2. Triebel, W.A., & Singh, A. (2002). The 8088 and 8086 Microprocessors Programming,

Interfacing, Software, Hardware and Applications. 4th edition. Pearson Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-2 Microprocessor Architecture: Internal Architecture of microprocessor, Register

Organization and flags, Programming models, Real mode memory addressing and

protected mode memory addressing.

3-4 Addressing modes: Data memory addressing modes, program memory addressing

modes, stack memory addressing mode.

5-6 Microprocessor Programming: Machine language, Instruction formats, Data

movement instructions, assembly language syntax, Stack manipulation

instructions, string transfer instructions, Arithmetic and logical instructions.

7-8 Program control instructions: The Jump group, different types of loops, defining

function in assembly language, function call and return, introduction to interrupts.

9 Hardware Specification of 8086/8088: Pin-out diagrams of 8086/8088

microprocessors, function of pins, role of clock generator.

10 Memory Interfacing: Address decoding, interfacing of memory with 8088 and

8086.

11-12 I/O Interfacing: I/O port address decoding, isolated and memory mapped I/O,

interfacing of keyboard and timer, communication interface

81

13-14 Interrupts : Purpose of interrupts, Interrupt instructions, interrupt vectors and

interrupt descriptors, functioning of interrupt controller

15 Direct Memory Access (DMA): Basic DMA operation, functioning of DMA

controller

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Microprocessor architecture, microprocessor programming, interfacing,

Information Security (BHCS17A) Discipline Specific Course - (DSE)

Credit: 06

Course Objective

The course offers a broad overview of the fundamentals of information security covering topics

such as error correction/detection, cryptography, steganography, malwares, This course also

touches on the implications of security in Internet of Things (IoT).

Course Learning Outcomes

On successful completion of this course, a student will be able to,

1. Identify the major types of threats to information security

2. Describe the role of cryptography in security

3. Select appropriate error-detection and error-correction methods for an application

4. Discuss the strengths and weaknesses of private and public key crypto systems

5. Describe malwares and memory exploits

6. Discuss the need for security in IoT

Detailed Syllabus

Unit 1

82

Introduction: Security Concepts, Challenges, Security architecture, Security attacks, security

services, security mechanisms

Unit 2

Error detecting/correction: Block Codes, Generator Matrix, Parity Check Matrix, Minimum

distance of a Code, Error detection and correction, Standard Array and syndrome decoding,

Hamming Codes

Unit 3

Cryptography: Encryption, Decryption, Substitution and Transposition, Confusion and

diffusion, Symmetric and Asymmetric encryption, Stream and Block ciphers, DES,

cryptanalysis.

Public-key cryptography, Diffie-Hellman key exchange, man-in-the-middle attack

Digital signature, Steganography, Watermarking.

Unit 4

Malicious software’s: Types of malwares (viruses, worms, trojan horse, rootkits, bots), Memory

exploits - Buffer overflow, Integer overflow

Unit 5

Security in Internet-of-Things: Security implications, Mobile device security - threats and

strategies

Practical

1. Implement the error correcting code.

2. Implement the error detecting code.

3. Implement caeser cipher substitution operation.

4. Implement monoalphabetic and polyalphabetic cipher substitution operation.

5. Implement playfair cipher substitution operation.

6. Implement hill cipher substitution operation.

7. Implement rail fence cipher transposition operation.

8. Implement row transposition cipher transposition operation.

9. Implement product cipher transposition operation.

10.Illustrate the Ciphertext only and Known plaintext attacks.

11.Implement a stream cipher technique

References

83

1. Pfleeger, C.P., Pfleeger,S.L., & Margulies, J. (2015). Security in Computing. 5th edition.

Prentice Hall

2. Lin, S. & Costello, D. J. (2004). Error Control Coding: Fundamentals and applications. 2nd

edition. Pearson Education

3. Stallings, W. (2018). Cryptography and network security. 7th edition. Pearson Education.

Additional Resources

1. Berlekamp, E. R. (1986). Algebraic Coding Theory. McGraw Hill Book Company

2. Stallings, W. (2018) Network security, essentials. 6th edition. Pearson Education.

3. Whitman M.E., & Mattord H.J. (2017). Principle of Information Security. 6th edition.

Cengage Learning.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-2
 Security Concepts, Challenges, Security architecture, Security

attacks, security services, security mechanisms

3-4

 Error detecting/correction, Block Codes, Generator Matrix, Parity

Check Matrix, Minimum distance of a Code, Error detection and

correction, Standard Array and syndrome decoding, Hamming

Codes

5-7

 Cryptography: Encryption, Decryption, Substitution and

Transposition, Confusion and diffusion, Symmetric and

Asymmetric encryption, Stream and Block ciphers, DES, Modes of

DES

8-9

 Cryptanalysis, Types of cryptanalytic attacks, Public-key

cryptography, Diffie-Hellman key exchange, man-in-the-middle

attack

84

10-11 Digital signatures, Steganography and Digital Watermarking

12-13

 Malicious Software: Types of malwares (viruses, worms, trojan

horse, rootkits, bots), Memory exploits - Buffer overflow, Integer

overflow

14-15
 Security in Internet-of-Things, Security implications, Mobile device

security - threats and strategies, Cyberlaws

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Security mechanisms, private and public key cryptography, malware detection, security in IoT.

Data Mining (BHCS17B) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

This course introduces data mining techniques and enables students to apply these techniques on

real-life datasets. The course focuses on three main data mining techniques: Classification,

Clustering and Association Rule Mining tasks.

Course Learning Outcomes

On successful completion of the course, students will be able to do following:

1. Pre-process the data, and perform cleaning and transformation.

2. Apply suitable classification algorithm to train the classifier and evaluate its performance.

3. Apply appropriate clustering algorithm to cluster data and evaluate clustering quality

4. Use association rule mining algorithms and generate frequent item-sets and association rules

Detailed Syllabus

85

Unit 1

Introduction to Data Mining - Applications of data mining, data mining tasks, motivation and

challenges, types of data attributes and measurements, data quality.

Data Pre-processing - aggregation, sampling, dimensionality reduction, Feature Subset

Selection, Feature Creation, Discretization and Binarization, Variable Transformation.

Unit 2

Classification: Basic Concepts, Decision Tree Classifier: Decision tree algorithm, attribute

selection measures, Nearest Neighbour Classifier, Bayes Theorem and Naive Bayes Classifier,

Model Evaluation: Holdout Method, Random Sub Sampling, Cross-Validation, evaluation

metrics, confusion matrix.

Unit 3

Association rule mining: Transaction data-set, Frequent Itemset, Support measure, Apriori

Principle, Apriori Algorithm, Computational Complexity, Rule Generation, Confidence of

association rule.

Unit 4

Cluster Analysis: Basic Concepts, Different Types of Clustering Methods, Different Types of

Clusters, K-means: The Basic K-means Algorithm, Strengths and Weaknesses of K-means

algorithm, Agglomerative Hierarchical Clustering: Basic Algorithm, Proximity between clusters,

DBSCAN: The DBSCAN Algorithm, Strengths and Weaknesses.

Practical

Section 1: Preprocessing

Q1. Create a file “people.txt” with the following data:

 Age agegroup height status yearsmarried

 21 adult 6.0 single -1

 2 child 3 married 0

 18 adult 5.7 married 20

 221 elderly 5 widowed 2

 34 child -7 married 3

i) Read the data from the file “people.txt”.

ii) Create a ruleset E that contain rules to check for the following conditions:

1. The age should be in the range 0-150.

2. The age should be greater than yearsmarried.

86

3. The status should be married or single or widowed.

4. If age is less than 18 the agegroup should be child, if age is between 18 and 65 the

agegroup should be adult, if age is more than 65 the agegroup should be elderly.

iii) Check whether ruleset E is violated by the data in the file people.txt.

iv) Summarize the results obtained in part (iii)

v) Visualize the results obtained in part (iii)

Q2. Perform the following preprocessing tasks on the dirty_iris dataset
ii
.

1. Calculate the number and percentage of observations that are complete.

2. Replace all the special values in data with NA.

3. Define these rules in a separate text file and read them.

(Use editfile function in R (package editrules). Use similar function in Python).

Print the resulting constraint object.

– Species should be one of the following values: setosa, versicolor or virginica.

– All measured numerical properties of an iris should be positive.

– The petal length of an iris is at least 2 times its petal width.

– The sepal length of an iris cannot exceed 30 cm.

– The sepals of an iris are longer than its petals.

4. Determine how often each rule is broken (violatedEdits). Also summarize and plot the

result.

 Find outliers in sepal length using boxplot and boxplot.stats

Q3. Load the data from wine dataset. Check whether all attributes are standardized or not (mean

is 0 and standard deviation is 1). If not, standardize the attributes. Do the same with Iris dataset.

Section 2: Data Mining Techniques

Run following algorithms on 2 real datasets and use appropriate evaluation measures to compute

correctness of obtained patterns:

Q4. Run Apriori algorithm to find frequent itemsets and association rules

4.1 Use minimum support as 50% and minimum confidence as 75%

4.2 Use minimum support as 60% and minimum confidence as 60 %

87

Q5. Use Naive bayes, K-nearest, and Decision tree classification algorithms and build classifiers.

Divide the data set into training and test set. Compare the accuracy of the different classifiers

under the following situations:

5.1 a) Training set = 75% Test set = 25%

b) Training set = 66.6% (2/3rd of total), Test set = 33.3%

5.2 Training set is chosen by i) hold out method ii) Random subsampling iii) Cross-

Validation. Compare the accuracy of the classifiers obtained.

5.3 Data is scaled to standard format.

Q6. Use Simple Kmeans, DBScan, Hierachical clustering algorithms for clustering. Compare

the performance of clusters by changing the parameters involved in the algorithms.

Recommended Datasets for DataMining practicals

1. UCI Machine Learning repository.

2. KDD Datasets

3. Open data platform, Government of India (https://data.gov.in/)

References

1. Han, J., Kamber, M.,& Jian,P. (2011). Data Mining: Concepts and Techniques. 3rd edition.

Morgan Kaufmann

2. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining. 1st Edition.

Pearson Education.

Additional Resources

1. Gupta, G. K. (2006). Introduction to Data Mining with Case Studies. Prentice-Hall of India.

2. Hand, D., & Mannila, H. & Smyth, P. (2006). Principles of Data Mining. Prentice-Hall of

India.

3. Pujari, A. (2008). Data Mining Techniques. 2nd edition. Universities Press.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

https://data.gov.in/

88

Tentative weekly teaching plan is as follows:

Week Content

1

Introduction to Data Mining , Challenges , Data Mining Origins, Data Mining

Tasks, Applications

2-3 Types of data, Data Quality, Data Pre-processing, Measures of similarity and

dissimilarity

5-8 Classification - Preliminaries, General Approach to Solving a Classification

Problem, Decision Tree Induction , Evaluating the Performance of a Classifier

8-9 Rule Based Classifier , Nearest Neighbor Classifiers, Bayesian Classifiers

10-11 Association Rules -Problem definition, Frequent item-set generation (Apriori

algorithm), Rule generation

11-12 Clustering - Basic concepts of clustering analysis, K-Means

13-14 Agglomerative Hierarchical Clustering, DBSCAN

15 Quality of clustering

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

data mining, classifiers, data pre-processing, metrics.

Advanced Algorithms (BHCS17C) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

89

This course focuses on the study of advanced data structures and algorithms for solving problems

efficiently and their theoretical behavior. The course also includes study of network flow

algorithms, NP completeness and backtracking.

Course Learning Outcomes

On successful completion of this course, the student will be able to:

1. Implement and empirically analyze advanced data-structures like tries, suffix trees.

2. Apply amortized analysis.

3. Develop more sophisticated algorithms using techniques like divide and conquer, dynamic

programming, greedy strategy, and augmentation

4. Prove that certain problems are too hard to admit fast solutions.

5. Develop algorithms using backtracking for the hard problems.

Detailed Syllabus

Unit 1

Advanced Data Structures: Skip Lists, Red-Black trees, Splay Trees, Mergeable heaps

(Fibonacci heaps), DS for sets - Union-Find Data Structure, Dynamic Tables, Dictionaries, Data

structures for strings - Tries, Suffix trees.

Unit 2

Divide and Conquer: Counting Inversions, Closest pair of points, Integer Multiplication,

Unit 3

Greedy Algorithm: Interval Scheduling, Huffman Code, Correctness and Analysis,

Unit 4

Dynamic Programming: Segmented Least Squares, Shortest Paths, Negative Cycles in Graphs

Unit 5

Network Flows: Max-flow problem, Ford Fulkerson Algorithm, Maximum flows and Minimum

Cuts in a network, Bipartite Matching.

Unit 6

NP Completeness: Polynomial time reductions, Efficient Certification and Definition of NP, NP

Complete problems, Sequencing problems, Partitioning problems, co-NP and asymmetry of NP.

Backtracking: Constructing All Subsets, Constructing All Permutations, Constructing All Paths

in a Graph.

90

Practical

Tutorials based on Theory.

References

1. Cormen, T.H., Leiserson,C.E., Rivest, R.L., & Stein,C.(2010). Introduction to Algorithms. 3rd

edition. Prentice-Hall of India Learning Pvt. Ltd.

2. Kleinberg, J., & Tardos, E. (2013). Algorithm Design. 1st edition. Pearson Education India.

Additional Resources

1. Basse, S., & Gleder, A. V. (1999). Computer Algorithm – Introduction to Design and

Analysis. 3rd edition. Pearson Education.

2. Dasgupta, S., Papadimitriou,C., & Vazirani, U. (2017). Algorithms. 1st edition. TataMcGraw

Hill.

3. Skiena, S. S. (2008). The Algorithm Design Manual. 2nd edition. Springer-Verlag London

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-4

 Advanced Data Structures: Skip Lists, Red-Black trees, Splay Trees, Mergeable

heaps (Fibonacci heaps), DS for sets - Union-Find Data Structure, Dynamic

Tables, Dictionaries, Data structures for strings - Tries, Suffix trees

5
 Divide and Conquer: Counting Inversions, Closest pair of points, Integer

Multiplication

6-7 Greedy Algorithm: Interval Scheduling, Huffman Code, Correctness and Analysis

8-9
 Dynamic Programming: Segmented Least Squares, Shortest Paths, Negative

Cycles in Graphs

10-11
 Network Flows: Max-flow problem, Ford Fulkerson Algorithm, Maximum flows

and Minimum Cuts in a network, Bipartite Matching

91

12-13

NP Completeness: Polynomial time reductions, Efficient Certification and

Definition of NP, NP Complete problems, Sequencing problems, Partitioning

problems, co-NP and asymmetry of NP

14-15

Backtracking: Constructing All Subsets, Constructing All Permutations,

Constructing All Paths in a Graph

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Algorithms, Analysis, Network Flows, NP Completeness.

Machine Learning (BHCS18A) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

The course aims at introducing the basic concepts and techniques of machine learning so that a

student can apply machine learning techniques to a problem at hand.

Course Learning Outcomes

On successful completion of this course, the student will be able to:

1. Differentiate between supervised and unsupervised learning tasks.

2. Differentiate between linear and non-linear classifiers.

3. Describe theoretical basis of SVM

4. Implement various machine learning algorithms learnt in the course.

Detailed Syllabus

92

Unit 1

Introduction: Basic definitions, Hypothesis space and inductive bias, Bayes optimal classifier

and Bayes error, Occam's razor, Curse of dimensionality, dimensionality reduction, feature

scaling, feature selection methods.

Unit 2

Regression: Linear regression with one variable, linear regression with multiple variables,

gradient descent, logistic regression, over-fitting, regularization. performance evaluation

metrics, validation methods.

Unit 3

Classification: Decision trees, Naive Bayes classifier, k-nearest neighbor classifier, perceptron,

multilayer perceptron, neural networks, back-propagation algorithm, Support Vector Machine

(SVM), Kernel functions.

Unit 4

Clustering: Approaches for clustering, distance metrics, K-means clustering, expectation

maximization, hierarchical clustering, performance evaluation metrics, validation methods.

Practical

For practical Labs for Machine Learning, students may use softwares like MABLAB/Octave or

Python. For later exercises, students can create/use their own datasets or utilize datasets from

online

repositories like UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/).

1. Perform elementary mathematical operations in Octave/MATLAB like addition,

multiplication, division and exponentiation.

2. Perform elementary logical operations in Octave/MATLAB (like OR, AND, Checking for

Equality, NOT, XOR).

3. Create, initialize and display simple variables and simple strings and use simple formatting for

variable.

4. Create/Define single dimension / multi-dimension arrays, and arrays with specific values like

array of all ones, all zeros, array with random values within a range, or a diagonal matrix.

5. Use command to compute the size of a matrix, size/length of a particular row/column, load

data from a text file, store matrix data to a text file, finding out variables and their features in the

current scope.

93

6. Perform basic operations on matrices (like addition, subtraction, multiplication) and display

specific rows or columns of the matrix.

7. Perform other matrix operations like converting matrix data to absolute values, taking the

negative of matrix values, additing/removing rows/columns from a matrix, finding the maximum

or minimum values in a matrix or in a row/column, and finding the sum of some/all

elements in a matrix.

8. Create various type of plots/charts like histograms, plot based on sine/cosine function based on

data from a matrix. Further label different axes in a plot and data in a plot.

9. Generate different subplots from a given plot and color plot data.

10. Use conditional statements and different type of loops based on simple example/s.

11. Perform vectorized implementation of simple matrix operation like finding the transpose of a

matrix, adding, subtracting or multiplying two matrices.

12. Implement Linear Regression problem. For example, based on a dataset comprising of

existing set of prices and area/size of the houses, predict the estimated price of a given house.

13. Based on multiple features/variables perform Linear Regression. For example, based on a

number of additional features like number of bedrooms, servant room, number of balconies,

number of houses of years a house has been built – predict the price of a house.

14. Implement a classification/ logistic regression problem. For example based on different

features of students data, classify, whether a student is suitable for a particular activity. Based on

the available dataset, a student can also implement another classification problem like checking

whether an email is spam or not.

15. Use some function for regularization of dataset based on problem 14.

16. Use some function for neural networks, like Stochastic Gradient Descent or backpropagation

- algorithm to predict the value of a variable based on the dataset of problem 14.

References

1. Flach, P. (2015). Machine Learning: The Art and Science of Algorithms that Make Sense of

Data. Cambridge University Press.

2. Mitchell, T.M. (2017). Machine Learning. McGraw Hill Education.

Additional References:

1. Christopher & Bishop, M. (2016). Pattern Recognition and Machine Learning. New York:

Springer-Verlag

94

2. Haykins, S.O. (2010). Neural Networks and Learning Machines. 3rd edition. PHI.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Basic definitions, Hypothesis space and inductive bias, Bayes optimal classifier

and Bayes error, Occam's razor

2 Curse of dimensionality, dimensionality reduction, feature scaling, feature

selection methods

3 Linear regression with one variable, linear regression with multiple variables

4 -5 Gradient descent, logistic regression, over-fitting, regularization

6 Performance evaluation metrics, validation methods.

7 Decision trees, Naive Bayes classifier ,k-nearest neighbor classifier

8 - 9 Perceptron, Multilayer perceptron, neural networks, back-propagation algorithm

10-11 Support Vector Machine (SVM), Kernel functions

12 Approaches for clustering, distance metrics

13 K-means clustering, expectation maximization

14 Hierarchical clustering

15 Clustering validation methods, performance evaluation metrics

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Machine learning, unsupervised learning, supervised learning, support vector machines, neural

networks, classification, clustering,

95

Deep Learning (BHCS18B) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

The objective of this course is to introduce students to deep learning algorithms and their

applications in order to solve real problems.

Course Learning Outcomes

On successful completion of this course, the student will be able to:

1. Describe the feed-forward and deep networks.

2. Design single and multi-layer feed-forward deep networks and tune various hyper-parameters.

3. Implement deep neural networks to solve a problem

4. Analyse performance of deep networks.

Detailed Syllabus

Unit 1

Introduction: Historical context and motivation for deep learning; basic supervised

classification task, optimizing logistic classifier using gradient descent, stochastic gradient

descent, momentum, and adaptive sub-gradient method.

Unit 2

Neural Networks: Feedforward neural networks, deep networks, regularizing a deep network,

model exploration, and hyper parameter tuning.

Unit 3

Convolution Neural Networks: Introduction to convolution neural networks: stacking, striding

and pooling, applications like image, and text classification.

Unit 4

Sequence Modeling: Recurrent Nets: Unfolding computational graphs, recurrent neural

networks (RNNs), bidirectional RNNs, encoder-decoder sequence to sequence architectures,

deep recurrent networks, LSTM networks.

Unit 5

96

Autoencoders: Undercomplete autoencoders, regularized autoencoders, sparse autoencoders,

denoising autoencoders, representational power, layer, size, and depth of autoencoders,

stochastic encoders and decoders.

Unit 6

Structuring Machine Learning Projects: Orthogonalization, evaluation metrics, train/dev/test

distributions, size of the dev and test sets, cleaning up incorrectly labeled data, bias and variance

with mismatched data distributions, transfer learning, multi-task learning.

Practical

1. Implement logistic regression classification with (a) gradient descent and (b) stochastic

gradient descent method. Plot cost function over iteration.

2. Experiment with logistic regression by adding momentum term, and adaptive sub-

gradient method

3. Write the code to learn weights of a perceptron for Boolean functions (NOT, OR, AND,

NOR, and NAND).

4. Implement a feed-forward neural network for solving (a) regression and (b) 2-class

classification problem. Also experiment with hyper-parameter tuning.

5. Train and test a feed-forward neural network for multi-class classification using softmax

layer as output.

6. Create a 2D and 3D CNN for image classification. Experiment with different depth of

network, striding and pooling values.

7. Implement (a) RNN for image classification, (b) GRU network and (c) Implement LSTM

networks

8. Implement an auto-encoder, denoising autoencoders and sparse autoencoders.

9. Design a stochastic encoders and decoders.

References:

1. Bunduma, N. (2017). Fundamentals of Deep Learning. O’reilly Books.

2. Heaton, J.(2015). Deep Learning and Neural Networks, Heaton Research Inc.

Additional References:

1. Goodfellow, I. (2016). Deep Learning. MIT Press.

2. Deng, L., & Yu, D. (2009). Deep Learning: Methods and Applications (Foundations and

Trends in Signal Processing). Publishers Inc.

3. Hall, M.L, (2011). Deep Learning. VDM Verlag

97

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1

 Introduction: Historical context and motivation for deep learning;

basic supervised classification task

2-3
 Optimizing logistic classifier using gradient descent, stochastic

gradient descent, momentum, and adaptive sub-gradient method

4-5

 Neural Networks: Feedforward neural networks, deep networks,

regularizing a deep network, model exploration, and hyper

parameter tuning

6-7

 Convolution Neural Networks: Introduction to convolution neural

networks: stacking, striding and pooling, applications like image,

and text classification

8
 Sequence Modeling: Recurrent Nets: Unfolding computational

graphs, recurrent neural networks (RNNs), bidirectional RNNs

9
 Encoder-decoder sequence to sequence architectures, deep recurrent

networks, LSTM networks

10
 Autoencoders: Undercomplete autoencoders, regularized

autoencoders, sparse autoencoders

11-12
 Denoising autoencoders, representational power, layer, size, and

depth of autoencoders, stochastic encoders and decoders.

13
 Structuring Machine Learning Projects: Orthogonalization,

evaluation metrics, train/dev/test distributions,

14-15

 Size of the dev and test sets, cleaning up incorrectly labeled data,

bias and variance with mismatched data distributions, transfer

learning, multi-task learning.

98

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Convolution Neural Networks, Recurrent nets, autoencoders

Unix Network Programming (BHCS18C) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

This course introduces the concepts of Internet protocols, ports used during communication,

Client/Server concepts and various transport protocols used in computer network applications

and services. The objective is to equip the students with technical knowledge of it comprises of

the study of the sockets used with TCP and UDP include IPV4 & IPV6.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe and analyse the various Internet Transport layer protocols used in TCP/IP AND

UDP.

2. Comprehend the concepts and structures of both TCP based connection-oriented and UDP

based connection-less client server applications.

3. Write various real-life client-server applications using socket programming.

4. Modify, maintain and extend the present internet client-server applications and write any new

type of internet applications to suit the current needs of Internet users.

Detailed Syllabus

Unit 1

Introduction: Basics of Client Server applications, Example of day time client server,

concurrent servers, protocols, sockets, port numbers.

Unit 2

99

Connection-oriented and Connection-less client server Applications: Elementary TCP

sockets – Socket, connect, bind, listen, accept, fork and exec function, close function, Socket

Address Structures, Byte Ordering and Manipulation Functions, TCP Client and Server for Echo,

Signal Handling in case of crashing and rebooting of server, Shutdown process function

Unit 3

Socket Options: Getsockopt and stockpot functions, Socket states, Generic socket option

Unit 4

Connection-oriented and connection-less Sockets: TCP-oriented basic concurrent client server

applications, UDP oriented Echo client and server application, Handling of errors like lost

datagram, Lack of flow control with UDP, determining outgoing interface with UDP.

Unit 5

Elementary name and Address conversions: Domain Name System, socket functions like

gethostbyname, gethostbyname2, gethostbyaddr function, uname function, gethostname function,

getservbyname and getservbyport functions.

Unit 6

Advanced Sockets: Daemon Processes, Multithreaded server, Raw sockets.

Practical

1. Implement TCP Echo client and TCP Echo server (Iterative).

2. Implement TCP Echo client and TCP Echo server (Concurrent).

3. Implement TCP daytime client and TCP daytime server (Iterative).

4. Implement TCP daytime client and TCP daytime server (concurrent).

5. Implement UDP Echo Client and UDP Echo Server.

6. Implement UDP daytime Client and UDP daytime server.

7. Implement TCP client and server (concurrent) where client gets input from the user and

sends it to server. Server displays it on the screen. Server then gets another input from

the user and sends it to client. Client displays it on the screen. The process continues till

server or client sends “bye” to the other party.

8. Implement TCP client and server (concurrent) where client requests server to transfer a

file. Assume file is smaller than 1K size. If the file is present on the server, it is sent to

the client otherwise an error message is sent to client. Client copies the file on the hard

disk and disconnects.

100

9. Implement UDP client and UDP server where server displays the IP address and port

number of the client sending the datagram. Client sends a datagram (size 64 bytes) three

times to the same server. Server sends the message back to client. Client reports the time

elapsed in sending and receiving of the message. Use connected UDP sockets.

10. Write to program to

1. display name of the host

2. all IP addresses of the host.

3. Check whether FTP and HTTP services are running on the system.

4. Display the name of the service running on port number specified by user.

References

1. Stevens, R. W., Fenner, B., & Rudoff, A. M. (2010). Unix Network Programming: The

Sockets Networking API. 3rd edition. PHI.

Additional Resources:

1. Forouzan, B. A. (2017). Data Communication and Networking. 4th edition. McGraw-Hill

Education.

2. Stevens, R. W. (2009). Unix Network Programming. 1st edition. PHI.

3. Tanenbaum, A. S. (2012). Computer Networks. 5th edition. Pearson Education

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Contents

1 Introduction, client server applications, protocols, port numbers

2-3 Sockets Functions, fork and exec function, Socket address

structure

4 TCP Echo Server

101

5 Signal Handling

6-7 I/O Multiplexing

8-9 Socket Options, Getsockopt and stockpot functions, socket

states, generic socket options

10 Elementary UDP sockets, TCP and UDP oriented client server

applications

11 Elementary name and Address conversions, DNS, socket

functions

12 Daemon Processes

13-14 Multithreaded server

15 Raw sockets

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Connection oriented sockets, connection less sockets, advanced sockets

Project Work / Dissertation (BHCS18D) Discipline Specific Elective - (DSE)

Credit: 06

Course Objective

 The students will undergo one semester of project work based on the concepts studied in a

subject of their choice. The objective is to train the students for the industry by exposing them to

prototype development of real life software.

Course Learning Outcomes

102

On successful completion of this course, a student will be able to:

1. develop a project plan based on informal description of the project.

2. implement the project as a team.

3. write a report on the project work carried out by the team and defend the work done by

the team collectively.

4. present the work done by the team to the evaluation committee.

Unit 1

 The students will work on any project based on the concepts studied in core/elective/ skill based

elective courses. Specifically, the project could be a research study, or a software development

project.

Unit 2

Project Group Organization/Plan

● Students will initially prepare a synopsis (500 words) and submit it to their respective

department.

● For a given project, the group size could be a maximum of four (04) students.

● Each group will be assigned a teacher as a supervisor who will be responsible for their

lab classes.

● A maximum of four (04) projects would be assigned to one teacher.

Unit 3

Project Evaluation

● 100 marks for end semester examination comprising Viva/presentation (50 marks) and

project report evaluation (50 marks): to be awarded jointly by the examiner and

supervisor / mentor.

● 50 marks for continuous evaluation (to be awarded by the supervisor/mentor). Work

carried out in each lab session will be assessed out of five marks (zero for being absent).

Finally, the marks obtained will be scaled out of a maximum of 50 marks. For example, if

103

30 lab sessions are held in a semester, and a student has obtained an aggregate of 110

marks, then he/she will be assigned round (110/(30*5)) i.e. 37 marks.

● The students will submit only the soft copies of the report.

● The reports may be retained by the examiners.

Practical

Practical/discussion sessions based on the area of the project.

Teaching Learning Process

● Group Discussions

● Presentations by group of students for enhanced learning.

Assessment Methods

● Assignments, presentations, viva, quiz

● Internal assessment

● End semester exam

Keywords

Software Development, Project planning.

Web Design and development (BHCS19A) Skill-Enhancement Elective Course -

(SEC)

Credit: 04

Course Objective

This course will introduce students to the fundamental concepts of web development. This

course will equip students with the ability to design and develop a dynamic website using

technologies like HTML, CSS, JavaScript, PHP and MySQL on platform like

WAMP/XAMP/LAMP.

Course Learning Outcomes

104

 On successful completion of the course, students will be able:

1. Design and develop a website

2. Use Front end technologies like HTML, CSS and JavaScript

3. Use backend technologies like PHP and MySQL

4. Work on platforms like WAMP/XAMP/LAMP

Detailed Syllabus

Unit 1

Introduction to Static and Dynamic Websites (Website Designing and Anatomy of Webpage)

Unit 2

Introduction to HTML and CSS (Basic Tags, Lists, Handling Graphics, Tables, Linking, Frames,

Forms), Introduction to DOM

Unit 3

Introduction to JavaScript (Basic Programming Techniques & Constructs, GET/POST Methods,

Operators, Functions, DOM Event handling, Forms Validation, Cookies), Inter-page

communication and form data handling using JavaScript

Unit 4

Introduction to PHP (Working, Difference with other technologies like JSP and ASP), PHP

Programming Techniques (Data types, Operators, Arrays, Loops, Conditional statements,

Functions, Regular expressions)

Unit 5

Form Data Handling with PHP, Database connectivity and handling using PHP-MySQL

Practical

1. Practicals based on HTML

2. Practicals based on CSS

3. Practicals based on PHP

4. Practicals to create HTML forms

5. Practicals based on database connectivity with

References:

1. Bayross, I. (2013). Web enabled commercial application development using HTML,

JavaScript, DHTML and PHP. 4th edition. BPB Publication.

105

2. Holzner, S.(2007). PHP: The Complete Reference Paperback, McGraw Hill Education

(India).

Additional Resources

1. Boronczyk, T., & Psinas, M. E. (2008). PHP and MYSQL (Create-Modify-Reuse). Wiley India

Private Limited.

2. Welling, L., & Thompson, L. (2008). PHP and MySQL Web Development. 4th edition.

Addition Paperback, Addison-Wesley Professional.

3. Nixon, R. (2014). Learning PHP, MySQL, JavaScript, CSS & HTML5. 3rd edition. Paperback,

O’reilly Media

4. Sklar, D., & Trachtenberg, A., (2014). PHP Cookbook: Solutions & Examples for PHP

Programmers. 2nd edition. O’reilly Media

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Static and dynamic websites, form handling, database connectivity.

Programming in Python (BHCS19B) Skill-Enhancement Elective Course - (SEC)

Credit: 06

Course Objective

This course is designed to introduce the student to the basics of programming using Python. The

course covers the topics essential for developing well documented modular programs using

different instructions and built-in data structures available in Python.

106

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Develop, document, and debug modular python programs to solve computational problems.

2. Select a suitable programming construct and data structure for a situation.

3. Use built-in strings, lists, sets, tuples and dictionary in applications.

4. Define classes and use them in applications.

5. Use files for I/O operations.

Detailed Syllabus

Unit 1

Introduction to Programming using Python: Structure of a Python Program, Functions,

Interpreter shell, Indentation. Identifiers and keywords, Literals, Strings, Basic operators

(Arithmetic operator, Relational operator, Logical or Boolean operator, Assignment Operator,

Bit wise operator).

Unit 2

Building blocks of Python: Standard libraries in Python, notion of class, object and method.

Unit 3

Creating Python Programs: Input and Output Statements, Control statements:-branching,

looping, Exit function, break, continue and pass, mutable and immutable structures. Testing and

debugging a program

Unit 4

Built-in data structures: Strings, lists, Sets, Tuples and Dictionary and associated operations.

Basic searching and sorting methods using iteration and recursion.

Unit 5

Visualization using 2D and 3D graphics: Visualization using graphical objects like Point, Line,

Histogram, Sine and Cosine Curve, 3D objects

Unit 6

Exception Handling and File Handling: Reading and writing text and structured files, Errors

and Exceptions.

Practical

1. Execution of expressions involving arithmetic, relational, logical, and bitwise operators

107

in the shell window of Python IDLE.

2. Write a Python function to produce the outputs such as:

a) *

 * * *

 * * * * *

 * * *

 *

(b) 1

 232

 34543

 4567654

 567898765

3. Write a Python program to illustrate the various functions of the “Math” module.

4. Write a function that takes the lengths of three sides: side1, side2 and side3 of the

triangle as the input from the user using input function and return the area of the

triangle as the output. Also, assert that sum of the length of any two sides is greater

than the third side.

5. Consider a showroom of electronic products, where there are various salesmen. Each

salesman is given a commission of 5%, depending on the sales made per month. In case

the sale done is less than 50000, then the salesman is not given any commission. Write

a function to calculate total sales of a salesman in a month, commission and remarks

for the salesman. Sales done by each salesman per week is to be provided as input.

Assign remarks according to the following criteria:

Excellent: Sales >=80000

Good: Sales>=60000 and <80000

Average: Sales>=40000 and <60000

Work Hard: Sales < 40000

6. Write a Python function that takes a number as an input from the user and computes its

factorial.

7. Write a Python function to return nth terms of Fibonacci sequence

8. Write a function that takes a number with two or more digits as an input and finds its

reverse and computes the sum of its digits.

9. Write a function that takes two numbers as input parameters and returns their least

common multiple and highest common factor.

10. Write a function that takes a number as an input and determine whether it is prime or

not.

11. Write a function that finds the sum of the n terms of the following series:

a) 1 – x
2
 /2! + x

4
 /4! – x

6
/6! + … x

n
 /n!

108

b) 1 + x
2
 /2! + x

4
 /4! + x

6
/6! + … x

n
 /n!

12. Write a Python function that takes two strings as an input from the user and counts the

number of matching characters in the given pair of strings.

13. Write a Python function that takes a string as an input from the user and displays its

reverse.

14. Write a Python function that takes a string as an input from the user and determines

whether it is palindrome or not.

15. Write a Python function to calculate the sum and product of two compatible matrices

16. Write a function that takes a list of numbers as input from the user and produces the

corresponding cumulative list where each element in the list present at index i is the

sum of elements at index j <= i.

17. Write a function that takes n as an input and creates a list of n lists such that ith list

contains first five multiples of i.

18. Write a function that takes a sentence as input from the user and calculates the

frequency of each letter. Use a variable of dictionary type to maintain the count.

19. Write a Python function that takes a dictionary of word:meaning pairs as an input from

the user and creates an inverted dictionary of the form meaning:list-of-words.

20. Usage of Python debugger tool-pydb and PythonTutor.

21. Implementation of Linear and binary search techniques

22. Implementation of selection sort, insertion sort, and bubble sort techniques

23. Write a menu-driven program to create mathematical 3D objects

 Curve, Sphere, Cone, Arrow, Ring, Cylinder.

24. Write a program that makes use of a function to accept a list of n integers and

displays a histogram.

25. Write a program that makes use of a function to display sine, cosine, polynomial and

exponential curves.

26. Write a program that makes use of a function to plot a graph of people with pulse rate

p vs. height h. The values of p and h are to be entered by the user.

27. Write a function that reads a file file1 and displays the number of words and the

number of vowels in the file.

28. Write a Python function that copies the content of one file to another.

29. Write a function that reads a file file1 and copies only alternative lines to another file

file2. Alternative lines copied should be the odd numbered lines.

References

1. Downey, A.B., (2015), Think Python–How to think like a Computer Scientist, 3rd edition.

O’Reilly Media.

2. Taneja, S. & Kumar, N., (2017), Python Programming- A Modular Approach. Pearson

Education.

109

Additional Resources

1. Brown, M. C. (2001). The Complete Reference: Python, McGraw Hill Education.

2. Dromey, R. G. (2006), How to Solve it by Computer, Pearson Education.

3. Guttag, J.V.(2016), Introduction to computation and programming using Python. MIT Press.

4. Liang, Y.D. (2013), Introduction to programming using Python. Pearson Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class-room teaching methods

● Interactive sessions

● Class discussions

● Mini projects in the laboratory

Tentative weekly teaching plan is as follows:

Week Content

1. Python Programming: An Introduction

Structure of a Python program, understanding Python interpreter/Python

shell, indentation. Atoms, identifiers and keywords, literals, Python

strings, arithmetic operator, relational operator, logical or boolean

operator, bit wise operators.

2 Variables and Functions

Python standard libraries such as sys and math. Variables and

assignment statements. Built-in functions such as input and print.

3-4 Control Structures

if conditional statement and for loop, While loop, break, continue, and

pass statement, else statement. Infinite loop

5 Functions

Function definition and call, default parameter values, keyword

arguments, assert statement

6 Strings and Lists

Strings-slicing, membership, and built-in functions on strings

Lists- list operations.

110

7. Mutable object

Lists- built-in functions, list comprehension, passing list as arguments,

copying list objects.

8 Sets, tuples, and dictionary- associated operations and built-in functions.

9 Testing and Debugging

Determining test cases, use of python debugger tool- pydb for

debugging

10 Searching and Sorting

Linear search, binary search, selection sort, insertion sort, and bubble

sort

11 Python 2D and 3D Graphics

Visualization using graphical objects like point, line, histogram, sine

and cosine curve, 3D objects

12 File Handling

Reading and writing text and structured files.

13 Errors and Exceptions

Types of errors and exceptions, and exception handling

14 Classes

Notion of class, object, and method.

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Python Program, Control structure, Decision making, Functions, Strings, Lists, Dictionary.

Android Programming (BHCS20A) Skill-Enhancement Elective Course - (SEC)

Credit:04

111

Course Objective

The paper provides an introduction to development of mobile application on android platform.

The topics include the Android development environment, activities, fragments, user interfaces,

intents, broadcast sender/receivers, services, notifications, SQLite database handling.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Describe characteristics of Android operating system

2. Describe components of an android applications

3. Design user interfaces using various widgets, dialog boxes, menus

4. Define interaction among various activities/applications using intents, broadcasting, services

5. Develop Android applications that require database handling

Detailed Syllabus

Unit 1

Introduction: Review to JAVA & OOPS Concepts, History of Android, Introduction to Android

Operating Systems, Android Development Tools, Android Architecture, Android components

including activities, view and view group, services, content providers, broadcast receivers,

intents, parcels, instance state.

Unit 2

User Interface Architecture: application context, intents: explicit intents, returning results from

activities, implicit intents, intent filter and intent resolution, and applications of implicit intents,

activity life cycle, activity stack, application’s priority and its process’ states, fragments and its

life cycle.

Unit 3

User Interface Design: Layouts, optimizing layout hierarchies, form widgets, text fields, button

control, toggle buttons, spinners, images, menu, dialog.

Unit 4

Broadcast receivers, notifications and services: Broadcast sender, receiver, broadcasting

events with intents, listening for broadcasts with broadcast receivers, broadcasting ordered

intents, broadcasting sticky intents, pending intents, creating notifications, setting and

customizing the notification tray UI. Create, start, and stop services, binding services to

activities, using asynctasks to manage background processing, handler, looper and runnable

112

Unit 5

Database and Content provider: SQLite, Content Values and Cursors, creating SQLite

databases, querying a database, adding, updating, and removing rows, Creating Content

Providers, implement content provider’s queries and its usage.

Practical

1. Create “Hello World” application. That will display “Hello World” in the middle of the

screen in the emulator. Also display “Hello World” in the middle of the screen in the

Android Phone.

2. Create an application with three buttons (increment, decrement and reset) and a textView

aligned vertically. On clicking, increment/decrement button, the value of the textview

should increment/decrement by 1while selecting reset button, the value of textview

should become zero.

3. Create an application with login module. (Check username and password).

4. Create spinner with strings taken from resource folder (res >> value folder) and on

changing the spinner value, Image will change.

5. Create a menu with 5 options and selected option should appear in text box.

6. Create a list of all courses in your college and on selecting a particular course teacher-in-

charge of that course should appear at the bottom of the screen.

7. Create an application with three option buttons, on selecting a button colour of the screen

will change.

8. Create an application to display various activity life cycle and fragment life cycle

methods.

9. Create an application with 2 fragments, one to set the background and other to set the

fore-color of the text.

10. Create an application with an activity having EditText and a button (with name “Send”).

On clicking Send button, make use of implicit intent that uses a Send Action and let user

select app from app chooser and navigate to that application.

11. Create a Login application. On successful login, use explicit intent to second activity

displaying welcome message (Welcome Username) to the user and a logout button. When

user presses logout button, a dialog box with a message (“Are you sure you want to exit?”)

and two buttons (“Yes” and “No”) should appear to confirm logout. On “Yes” button click,

go to login activity and on “No”, stay on the same activity.

12. Create an application for Broadcast sender and receivers.

13. Create an application to create notification having icon, text and title.

113

14. Create an application to create services.

15. Create an application to Create, Insert, update, Delete and retrieve operation on the

database.

References

1. Griffiths, D., & Griffiths, D., (2015). Head First Android Development, O'reilly Media.

2. Meier, R.,(2012). Professional Android™ 4 Application Development. John Wiley & Sons,

Inc.

Additional Resources:

1. Murphy, M. L. (2018). The Busy Coder’s Guide to Android Development, CommonsWare

2. Phillips, B., Stewart, C., Hardy, B. & Marsicano, K. (2015). Android Programming: The Big

Nerd Ranch Guide.Big Nerd Ranch. Guides.

3. Sheusi, J. C. (2013). Android Application Development for Java Programmers. Cengage

Learning.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1-2 Introduction: Review to JAVA & OOPS Concepts

3
 History of Android, Introduction to Android Operating Systems,

Android Development Tools

4

 Android Architecture Android components including activities, view

and view group, services, content providers, broadcast receivers,

intents, parcels, instance state.

5-6

 User Interface Architecture, Application context, explicit intents,

returning results from activities, implicit intents, intent filter and

intent resolution, and applications of implicit intents

7
 Activity life cycle, activity stack, application’s priority and its

process’ states, fragments and its life cycle.

114

8 User Interface Design: Layouts, optimizing layout hierarchies,

9-10
 Widgets with event handling: TextView, button control, toggle

buttons, spinners, images, menu, dialog.

11

 Broadcast sender and receivers: Broadcast sender, receiver,

broadcasting events with intents, listening for broadcasts with

broadcast receivers, broadcasting ordered intents, broadcasting

sticky intents,

12
 Notifications: pending intents, creating notifications, setting and

customizing the notification tray UI.

13

 Services: Create, start, and stop services, binding services to

activities, using asynctasks to manage background processing,

handler, looper and runnable

14-15

 Database and Content provider: SQLite, Content Values and Cursors,

creating SQLite databases, querying a database, adding, updating,

and removing rows, Creating Content Providers, implement content

provider’s queries and its usage.

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Android App Development, Activities, Fragments, User interfaces, Intents, Broadcast

sender/receivers, Services, Notifications, SQLite Database

Introduction to R Programming (BHCS20B) Skill-Enhancement Elective Course

- (SEC)

Credit: 04

Course Objective

This course introduces R, which is a popular statistical programming language. The course

covers data reading and its manipulation using R, which is widely used for data analysis

115

internationally. The course also covers different control structures and design of user-defined

functions. Loading, installing and building packages are covered.

Course Learning Outcomes

On successful completion of the course, students will be able to do following:

1. Develop an R script and execute it

2. Install, load and deploy the required packages, and build new packages for sharing and

reusability

3. Extract data from different sources using API and use it for data analysis

4. Visualize and summarize the data

5. Design application with database connectivity for data analysis

Detailed Syllabus

Unit 1

Introduction: R interpreter, Introduction to major R data structures like vectors, matrices,

arrays, list and data frames, Control Structures, vectorized if and multiple selection, functions.

Unit 2

Installing, loading and using packages: Read/write data from/in files, extracting data from

web-sites, Clean data, Transform data by sorting, adding/removing new/existing columns,

centring, scaling and normalizing the data values, converting types of values, using string in-built

functions, Statistical analysis of data for summarizing and understanding data, Visualizing data

using scatter plot, line plot, bar chart, histogram and box plot

Unit 3

Designing GUI: Building interactive application and connecting it with database.

Unit 4

Building Packages.

Practical

Q1. Write an R script to do the following:

116

a) simulate a sample of 100 random data points from a normal distribution with mean 100

and

standard deviation 5 and store the result in a vector.

b) visualize the vector created above using different plots.

c) test the hypothesis that the mean equals 100.

d) use wilcox test to test the hypothesis that mean equals 90.

Q2. Using the Algae data set from package DMwR to complete the following tasks.

a) create a graph that you find adequate to show the distribution of the values of algae a6.

b) show the distribution of the values of size 3.

c) check visually if oPO4 follows a normal distribution.

d) produce a graph that allows you to understand how the values of NO3 are distributed

across the sizes of river.

e) using a graph check if the distribution of algae a1 varies with the speed of the river.

f) visualize the relationship between the frequencies of algae a1 and a6. Give the

appropriate graph title, x-axis and y-axis title.

Q3. Read the file Coweeta.CSV and write an R script to do the following:

a) count the number of observations per species.

b) take a subset of the data including only those species with at least 10 observations.

c) make a scatter plot of biomass versus height, with the symbol colour varying by species,

and use filled squares for the symbols. Also add a title to the plot, in italics.

d) log-transform biomass, and redraw the plot.

Q4. The built-in data set mammals contain data on body weight versus brain weight. Write R

commands to:

a) Find the Pearson and Spearman correlation coefficients. Are they similar?

b) Plot the data using the plot command .

c) Plot the logarithm (log) of each variable and see if that makes a difference.

Q5. In the library MASS is a dataset UScereal which contains information about popular

breakfast cereals. Attach the data set and use different kinds of plots to investigate the following

relationships:

a) relationship between manufacturer and shelf

b) relationship between fat and vitamins

c) relationship between fat and shelf

d) relationship between carbohydrates and sugars

e) relationship between fibre and manufacturer

f) relationship between sodium and sugars

Q6. Write R script to:

a) Do two simulations of a binomial number with n = 100 and p = .5. Do you get the same

results each time? What is different? What is similar?

117

b) Do a simulation of the normal two times. Once with n = 10, µ = 10 and σ = 10, the other

with n = 10, µ = 100 and σ = 100. How are they different? How are they similar? Are

both approximately normal?

Q7. Create a database medicines that contains the details about medicines such as {manufacturer,

composition, price}. Create an interactive application using which the user can find an

alternative to a given medicine with the same composition.

Q8. Create a database songs that contains the fields {song_name, mood,

online_link_play_song}. Create an application where the mood of the user is given as input

and the list of songs corresponding to that mood appears as the output. The user can listen to

any song form the list via the online link given.

Q9. Create a package in R to perform certain basic statistics functions.

Mini project using data set of your choice from Open Data Portal (https://data.gov.in/) for the

following exercises

References

1. Cotton, R., Learning R: a step by step function guide to data analysis. 1st edition. O’reilly

Media Inc.

Additional Resources:

2. Gardener, M.(2017). Beginning R: The statistical programming language, WILEY.

3. Lawrence, M., & Verzani, J. (2016). Programming Graphical User Interfaces in R. CRC

press. (ebook)

Web Resources

https://jrnold.github.io/r4ds-exercise-solutions/index.html

https://www.r-project.org/

https://cran.r-project.org/

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

https://data.gov.in/

118

Tentative weekly teaching plan is as follows:

Week Content

1 R interpreter, Introduction to major R data structures like vectors, matrices, arrays, list

and data frames

2 Flow control and loops, looping over list and array

3 User-defined functions

4 Installing, loading different packages for file handling

5 Reading and writing files of different formats using inbuilt packages

6 Using inbuilt packages for data cleaning

7 Transformation of data for statistical analysis

8 Exploring and summarizing data using statistical methods: mean, median, mode

9 Exploring and summarizing data using statistical methods: quantiles, Building

contingency table

10 Data visualization using Scatter Plot, line graph, histogram, barchart, boxplot

11 Designing GUI

12 Continuing with creating GUI for application, building package

13-14 Using inbuilt packages for database connectivity

15 Building complete application with GUI and database connectivity

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class

Keywords

R data structures, flow control, packages, functions

119

Acknowledgement (in alphabetical order)

Ajay Jaiswal Shaheed Sukhdev College of Business Studies

Alka Khurana Hansraj College

Anamika Gupta Shaheed Sukhdev College of Business Studies

Anjali Thukral Keshav Mahavidyalaya

Anuja Soni Deen Dayal Upadhyay College

Anuradha Khattar Miranda House

Archana Singhal IP College

Arpita Sharma Deen Dayal Upadhyaya College

Bharti Hans Raj College

Bhavna Gupta Keshav Mahavidyalaya

Chanderkant Samal AND College

Charu Puri PGDAV College

Deepti Chopra IP college for women

Divya Kawatra Hansraj College

Harita Ahuja Acharya Narendra Dev College

Harmeet Kaur Hansraj College

Hema Banati Dayal Singh College

Manisha Bansal Indraprastha College for Women, University of Delhi

Manju Bala IP College

Manju Bhardwaj Maitreyi College

Maulein Pathak Keshav Mahavidyalaya, University of Delhi

Megha Khandelwal Department of Computer Science

Ms Vandana Kalra Shri Guru Gobind Singh College of Commerce

Ms. Bharti Kumar Shyam Lal College (Eve.)

Nagendra Duhan Bhagni Nivedita College

Naveen Kumar Deptt. of Computer Science

Neelima Gupta Deptt. of Computer Science

Neeraj Kumar Sharma Ram Lal Anand College

Nidhi Arora Kalindi College

Nikhil Rajput Ramanujan College

120

Nisha Deptt. of Computer Science

Onkar Singh Shaheed Sukhdev College of Business Studies

PK Hazra Deptt. of Computer Science

Preeti Marwaha Acharya Narendra Dev College

Priti Sehgal Keshav Mahavidyalaya

Priyanka Rathi Deptt. of Computer Science

Punam Bedi Deptt. of Computer Science

Rajan Gupta DDU college

Rajni Bala Deen Dayal Upadhyay College

Rakhi Saxena Deshbandhu College

Rampal Rana Deen Dayal Upadhyay College

Ravi Yadav Keshav Mahavidyalaya, University of Delhi

Ravish Sharma PGDAV College

Reena Kasana Deptt. of Computer Science

Rochana Chaturvedi Keshav Mahavidyalaya

Roli Bansal Keshav Mahavidyalaya

Ronnie Chakre Deptt. of Computer Science

S K Muttoo Deptt. of Computer Science

Sahil Pathak Ramanujan College

Sameer Anand Shaheed Sukhdev College of Business Studies

Sangeeta Srivastava BCAS

Sapna Varshney Deptt. of Computer Science

Sanjeet Kumar DDU College

Sarabjeet Kochhar Indraprastha College for Women

Seema Aggarwal Miranda House

Sharanjit Kaur Acharya Narendra Dev College

Shikha Badhani Maitri College

Shikha Gupta Shaheed Sukhdev College of Business Studies

Shikha Verma Ram Lal Anand College

Sonika Thakral Shaheed Sukhdev College of Business Studies

Sujata Khatri Deen Dayal Upadhyay College

Suruchi Chawla

Shaheed rajguru college of applied science for

women

Sushila Madan LSR College

Vandana Kalra Sri Guru Gobind Singh College of Commerce

Vasudha Bhatnagar Deptt. of Computer Science

Vibha Gaur Acharya Narendra Dev College

Vimala Parihar Indraprastha College for Women

Vinita Jindal Keshav Mahavidyalaya

