

10

1. There will be one batch of 10-15 students for practical classes. The size of tutorial group

for papers without practical is recommended to be 8-10 students.

2. Each practical will carry 50 marks including 25 marks for continuous evaluation and 5

marks for the oral viva.

3. Colleges are advised and encouraged to conduct the practical using Free and Open

Source Software (FOSS)

4. At least two questions have to be compulsorily attempted in the final practical

examination.

5. Softcopy of all the practical must be maintained by each student for each practical paper.

6. Discipline specific core and elective courses (DSC and DSE) are to be taught as 4 Hrs

theory and 4 Hrs practical per week. In case the course has tutorials, it is to be taught as 5

Hrs theory and 1 Hr. tutorial per week

7. Skill enhancement courses (SEC) are to be taught as 2 Hrs theory and 4 Hrs practical per

week.

8. Practical given for the courses are only indicative, and by no means exhaustive. Instructor

may add more complex problems in laboratory depending on the ability of the students.

7. Courses for Programme B.Sc. (H) Computer Science

Programming Fundamentals using C++ (BHCS01) Discipline Specific Core

Course - (DSC)

Credit: 06

Course Objective

This course is designed to develop structured as well as object-oriented programming skills using

C++ programming language. The course not only focuses on basic C++ constructs but also

covers object-oriented programming features in-depth, namely Encapsulation, Abstraction,

Inheritance and Polymorphism for writing efficient codes.

Course Learning Outcomes

On successful completion of the course, students will be able to:

1. Explain significance of object oriented paradigm

11

2. Solve programming problems using object oriented features.

3. Handle external files as well as exceptions.

4. Reuse classes to create new classes.

5. Handle exceptions in programs.

Detailed Syllabus

Unit 1

Introduction to C++: Overview of Procedural Programming and Object-Oriented

Programming, Using main () function, Header Files, Compiling and Executing Simple Programs

in C++.

Unit 2

Programming Fundamentals: Data types, Variables, Operators, Expressions, Arrays,

Keywords, Naming Convention, Decision making constructs (if, switch), Looping (for, while,

do…while), Type Casting, Input-output statements, Functions, Command Line

Arguments/Parameters.

Unit 3

Object Oriented Programming: Overview of Abstraction, Encapsulation, Inheritance, and

Polymorphism. Creating Classes and objects, Modifiers and Access Control, Constructors,

Implementation of Inheritance (Single and multilevel), Implementation of Polymorphism

(Function Overloading and Operator Overloading, Function Overriding).

Unit 4

Pointers and References: Static and dynamic memory allocation, Pointer and Reference

Variables, Pointers vs. References, Implementing Runtime polymorphism using pointers and

references.

Unit 5

Exception and File Handling: Using try, catch, throw, throws and finally; Nested try, creating

user defined exceptions, File I/O Basics, File Operations.

Practical

1. Write a program to compute the sum of the first n terms of the following series:
S = 1 - 1 / (2 ^ 2) + 1 / (3 ^ 3) - ... 1 / (n ^ n)

where ^ is exponentiation.
The number of terms n is to be taken from user through command line. If command line

12

argument is not found then prompt the user to enter the value of n.

2. Write a program to remove the duplicates from an array.

3. Write a program that prints a table indicating the number of occurrences of each alphabet
in the text entered as command line arguments.

4. Write a menu driven program to perform following operations on strings (without using
inbuilt string functions):

a) Show address of each character in string

b) Concatenate two strings.

c) Compare two strings

d) Calculate length of the string (use pointers)

e) Convert all lowercase characters to uppercase

f) Reverse the string

5. Write a program to merge two ordered arrays to get a single ordered array.

6. Write a program to search a given element in a set of N numbers using Binary search

(i) with recursion (ii) without recursion.

7. Write a program to calculate GCD of two numbers (i) with recursion (ii) without
recursion.

8. Create Matrix class. Write a menu-driven program to perform following Matrix
operations:

a) Sum

b) Product

c) Transpose

9. Define a class Person having name as a data member. Inherit two classes Student and
Employee from Person. Student has additional attributes as course, marks and year and
Employee has department and salary. Write display() method in all the three classes to
display the corresponding attributes. Provide the necessary methods to show runtime
polymorphism.

10. Create a class Triangle. Include overloaded functions for calculating area. Overload
assignment operator and equality operator.

11. Write a program to read two numbers p and q. If q is 0 then throw an exception else
display the result of p/q.

12. Rewrite Matrix class of Q8 with exception handling. Exceptions should be thrown by
the functions if matrices passed to them are incompatible and handled by main() function.

13

13. Create a class Student containing fields for Roll No., Name, Class, Year and Total
Marks. Write a program to store 5 objects of Student class in a file. Retrieve these records
from file and display them.

14. Copy the contents of one text file to another file, after removing all whitespaces.

References

1. Forouzan & Gilbert (2012). Computer Science: A Structured Approach Using C++. Cengage

Learning.

2. Schildt, H. (2003). C++: The Complete Reference. 4th edition. Tata McGraw-Hill.

Additional Resources

1. Balaguruswamy, E. (2017). Object Oriented Programming with C++ (7th ed.). McGraw Hill

Education.

2. Kanetkar, Y. P. (2015). Let us C++ .2nd edition. BPB Publishers.

3. Prata, S. (2015). C++ Primer Plus 6th edition. Pearson Education India.

4. Stroustrup, B. (2013). The C++ Programming Language .4th Edition. Pearson Education.

Course Teaching Learning Process

● Use of ICT tools in conjunction with traditional class room teaching methods

● Interactive sessions

● Class discussions

Tentative weekly teaching plan is as follows:

Week Content

1 Introduction to C++: Overview of Procedural Programming and Object-
Oriented Programming, Using main () function, Header Files,
Compiling and Executing Simple Programs in C++

2 Data types, Variables , Operators, Expressions, Arrays, Keywords,
Naming Convention, Type Casting, Input-output statements

3 Decision making constructs (if, switch), Looping (for, while,
do…while)

14

4 Functions, Command Line Arguments/Parameters

5 – 9 Overview of Abstraction, Encapsulation, Inheritance, and
Polymorphism. Creating Classes and objects, Modifiers and Access
Control, Constructors, Inheritance (Single and multilevel),
Polymorphism (Function Overloading, Operator Overloading, Function
Overriding)

10-12 Static and dynamic memory allocation, Pointer variables, Reference
Variables, Pointers vs. References, Runtime polymorphism using
pointers and references

13-15 Exception and File Handling: Using try, catch, throw, throws and
finally; Nested try, creating user defined exceptions, File I/O Basics,
File Operations

Assessment Methods

Written tests, assignments, quizzes, presentations as announced by the instructor in the class.

Keywords

Procedural and Object Oriented programming, abstraction, inheritance, polymorphism, pointers,

exception and file handling

Computer System Architecture (BHCS02) Discipline Specific Core Course -

(DSC) Credit: 06

Course Objective

This course introduces the students to the fundamental concepts of digital computer organization,

design and architecture. It aims to develop a basic understanding of the building blocks of the

computer system and highlights how these blocks are organized together to architect a digital

computer system.

